Galleria Mellonella as a model for drug screening of topical steroids against Malassezia Furfur
DOI:
https://doi.org/10.47611/jsrhs.v11i3.2962Keywords:
Galleria Mellonella, Model Organisim, Drug Screening, Malassezia Furfur, topical steroidsAbstract
The process of drug development is a long and laborious system where almost 90% of clinical drug trials end up failing. Therefore, drug screening in the preclinical stage is imperative to ensuring a higher success rate of the newly developed drug. One of the recently proposed model organisms for testing has been the larvae Galleria Mellonella mainly due to its technical and biological advantages. This study investigates the larvae as a potential model for specifically topical treatments against the fungal pathogen Malassezia Furfur. Using an application method, the larvae pre infected with M.Furfur showed recovery when treated with an antifungal topical treatment. Through this study the G.Mellonella has proven to be an effective model for topical drug testing to conduct an efficient and cost effective testing on a large scale for future pre clinical research.
Downloads
References or Bibliography
Alcazar-Fuoli, L., Buitrago, M., Gomez-Lopez, A., & Mellado, E. (2015). An alternative host model of a mixed fungal infection by azole susceptible and resistantaspergillusSPP strains. Virulence, 6(4), 376–384. https://doi.org/10.1080/21505594.2015.1025192
Alghoribi, M. F., Gibreel, T. M., Dodgson, A. R., Beatson, S. A., & Upton, M. (2014). Galleria mellonella infection model demonstrates high lethality of ST69 and ST127 uropathogenic E. coli. PloS one, 9(7), e101547. https://doi.org/10.1371/journal.pone.0101547
Asai, M., Li, Y., Khara, J. S., Robertson, B. D., Langford, P. R., & Newton, S. M. (2019). Galleria mellonella: An Infection Model for Screening Compounds Against the Mycobacterium tuberculosis Complex. Frontiers in microbiology, 10, 2630. https://doi.org/10.3389/fmicb.2019.02630
Beth Burgwyn Fuchs, Elizabeth O’Brien, Joseph B. El Khoury & Eleftherios Mylonakis (2010) Methods for using Galleria mellonella as a model host to study fungal pathogenesis, Virulence, 1:6, 475-482, DOI: 10.4161/viru.1.6.12985
Binder, U., Maurer, E., & Lass-Flörl, C. (2016). Galleria mellonella: An invertebrate model to study pathogenicity in correctly defined fungal species. Fungal biology, 120(2), 288–295. https://doi.org/10.1016/j.funbio.2015.06.002
Champion O. L., Wagley S., Titball R. W. (2016). Galleria Mellonella as a Model Host for Microbiological and Toxin Research. Virulence 7, 840–845. doi: 10.1080/21505594.2016.1203486
Chaves-Moreno, D., Wos-Oxley, M. L., Jáuregui, R., Medina, E., Oxley, A. P., Pieper, D. H. (2016). Exploring the Transcriptome of Staphylococcus Aureus in its Natural Niche. Sci. Rep. 6, 33174. doi: 10.1038/srep33174
Cotter, G., Doyle, S., & Kavanagh, K. (2000). Development of an insect model for the in vivo pathogenicity testing of yeasts. FEMS Immunology & Medical Microbiology, 27(2), 163–169. https://doi.org/10.1111/j.1574-695x.2000.tb01427.x
Cutuli, M. A., Petronio Petronio, G., Vergalito, F., Magnifico, I., Pietrangelo, L., Venditti, N., & Di Marco, R. (2019). Galleria mellonella as a consolidated in vivo model hosts: New developments in antibacterial strategies and novel drug testing. Virulence, 10(1), 527–541. https://doi.org/10.1080/21505594.2019.1621649
Desalermos, A., Tan, X., Rajamuthiah, R., Arvanitis, M., Wang, Y., Li, D., Kourkoumpetis, T. K., Fuchs, B. B., & Mylonakis, E. (2014). A multi-host approach for the systematic analysis of virulence factors in cryptococcus neoformans. Journal of Infectious Diseases, 211(2), 298–305. https://doi.org/10.1093/infdis/jiu441
Desbois, A. P., & Coote, P. J. (2011). Wax moth larva (Galleria mellonella): an in vivo model for assessing the efficacy of antistaphylococcal agents. The Journal of antimicrobial chemotherapy, 66(8), 1785–1790. https://doi.org/10.1093/jac/dkr198
Editorial, P. M. D. (2017, April 14). Fungal infection (malassezia pachydermatis) of the skin in dogs. PetMD. Retrieved September 27, 2021, from https://www.petmd.com/dog/conditions/skin/c_dg_malassezia_dermatitis.
Eisenhardt, M., Schlupp, P., Höfer, F., Schmidts, T., Hoffmann, D., Czermak, P., et al. (2019). The Therapeutic Potential of the Insect Metalloproteinase Inhibitor Against Infections Caused by Pseudomonas Aeruginosa. J. Pharm. Pharmacol. 71, 316–328. doi: 10.1111/jphp.13034
Fitts D. A. (2011). Ethics and animal numbers: informal analyses, uncertain sample sizes, inefficient replications, and type I errors. Journal of the American Association for Laboratory Animal Science : JAALAS, 50(4), 445–453.
Fuchs BB, Mylonakis E. Using non-mammalian hosts to study fungal virulence and host defense. Curr Opin Microbiol. 2006 Aug;9(4):346-51. doi: 10.1016/j.mib.2006.06.004. Epub 2006 Jun 30. PMID: 16814595.
Gao, Z., Perez-Perez, G. I., Chen, Y., & Blaser, M. J. (2010). Quantitation of major human cutaneous bacterial and fungal populations. Journal of clinical microbiology, 48(10), 3575–3581. https://doi.org/10.1128/JCM.00597-10
García-Lara J., Needham A. J., Foster S. J. (2005). Invertebrates as Animal Models for Staphylococcus Aureus Pathogenesis: A Window Into Host–Pathogen Interaction. FEMS Immunol. Med. Microbiol. 43, 311–323. doi: 10.1016/j.femsim.2004.11.003
Gomez-Lopez, A., Forastiero, A., Cendejas-Bueno, E., Gregson, L., Mellado, E., Howard, S. J., Livermore, J. L., Hope, W. W., & Cuenca-Estrella, M. (2014). An invertebrate model to evaluate virulence in aspergillus fumigatus: The role of Azole Resistance. Medical Mycology, 52(3), 311–319. https://doi.org/10.1093/mmy/myt022
Harding, C. R., Schroeder, G. N., Collins, J. W., & Frankel, G. (2013). Use of Galleria mellonella as a model organism to study Legionella pneumophila infection. Journal of visualized experiments : JoVE, (81), e50964. https://doi.org/10.3791/50964
Harding, C. R., Schroeder, G. N., Reynolds, S., Kosta, A., Collins, J. W., Mousnier, A., & Frankel, G. (2012). Legionella pneumophila pathogenesis in the Galleria mellonella infection model. Infection and immunity, 80(8), 2780–2790. https://doi.org/10.1128/IAI.00510-12
Hoffmann, J. The immune response of Drosophila. Nature 426, 33–38 (2003). https://doi.org/10.1038/nature02021
Hunter, T., & Hunter, C. T. (n.d.). Yeast dermatitis in dogs. vca_corporate. Retrieved September 27, 2021, from https://vcahospitals.com/know-your-pet/yeast-dermatitis-in-dogs.
James D Ellis, Jason R Graham & Ashley Mortensen (2013) Standard methods for wax moth research, Journal of Apicultural Research, 52:1, 1-17, DOI: 10.3896/IBRA.1.52.1.10
Jorjão, A. L., Oliveira, L. D., Scorzoni, L., Figueiredo-Godoi, L., Cristina A Prata, M., Jorge, A., & Junqueira, J. C. (2018). From moths to caterpillars: Ideal conditions for Galleria mellonella rearing for in vivo microbiological studies. Virulence, 9(1), 383–389. https://doi.org/10.1080/21505594.2017.1397871
Kaito, C., Murakami, K., Imai, L., & Furuta, K. (2020). Animal infection models using non-mammals. Microbiology and immunology, 64(9), 585–592. https://doi.org/10.1111/1348-0421.12834
Kwadha, C. A., Ong'amo, G. O., Ndegwa, P. N., Raina, S. K., & Fombong, A. T. (2017). The Biology and Control of the Greater Wax Moth, Galleria mellonella. Insects, 8(2), 61. https://doi.org/10.3390/insects8020061
Lavine, M. D., & Strand, M. R. (2002). Insect hemocytes and their role in immunity. Insect biochemistry and molecular biology, 32(10), 1295–1309. https://doi.org/10.1016/s0965-1748(02)00092-9
Lewis, A. J., Seymour, C. W., & Rosengart, M. R. (2016). Current Murine Models of Sepsis. Surgical Infections, 17(4), 385–393. https://doi.org/10.1089/sur.2016.021
Loh, J. M., Adenwalla, N., Wiles, S., & Proft, T. (2013). Galleria mellonella larvae as an infection model for group A streptococcus. Virulence, 4(5), 419–428. https://doi.org/10.4161/viru.24930
Maurer, E., Hörtnagl, C., Lackner, M., Grässle, D., Naschberger, V., Moser, P., Segal, E., Semis, M., Lass-Flörl, C., & Binder, U. (2018). Galleria mellonella as a model system to study virulence potential of mucormycetes and evaluation of antifungal treatment. Medical Mycology, 57(3), 351–362. https://doi.org/10.1093/mmy/myy042
Mowlds, P., & Kavanagh, K. (2007). Effect of pre-incubation temperature on susceptibility of galleria mellonella larvae to infection by candida albicans. Mycopathologia, 165(1), 5–12. https://doi.org/10.1007/s11046-007-9069-9
Mylonakis, E., Moreno, R., El Khoury, J. B., Idnurm, A., Heitman, J., Calderwood, S. B., Ausubel, F. M., & Diener, A. (2005). galleria mellonella as a model system to study cryptococcus neoformans pathogenesis. Infection and Immunity, 73(7), 3842–3850. https://doi.org/10.1128/iai.73.7.3842-3850.2005
Ménard, G., Rouillon, A., Cattoir, V., & Donnio, P. Y. (2021). Galleria mellonella as a Suitable Model of Bacterial Infection: Past, Present and Future. Frontiers in cellular and infection microbiology, 11, 782733. https://doi.org/10.3389/fcimb.2021.782733
O'Callaghan D, Vergunst A. Non-mammalian animal models to study infectious disease: worms or fly fishing? Curr Opin Microbiol. 2010 Feb;13(1):79-85. doi: 10.1016/j.mib.2009.12.005. Epub 2010 Jan 4. PMID: 20045373.
Pereira M. F., Rossi C. C., da Silva G. C., Rosa J. N., Bazzolli D. M. S. (2020). Galleria Mellonella as an Infection Model: An in-Depth Look at Why it Works and Practical Considerations for Successful Application. Pathog. Dis. 78, ftaa056. doi: 10.1093/femspd/ftaa056
Pereira, T. C., de Barros, P. P., Fugisaki, L., Rossoni, R. D., Ribeiro, F. C., de Menezes, R. T., Junqueira, J. C., & Scorzoni, L. (2018). Recent Advances in the Use of Galleria mellonella Model to Study Immune Responses against Human Pathogens. Journal of fungi (Basel, Switzerland), 4(4), 128. https://doi.org/10.3390/jof4040128
Peterson, R. T., Nass, R., Boyd, W. A., Freedman, J. H., Dong, K., & Narahashi, T. (2008). Use of non-mammalian alternative models for neurotoxicological study. Neurotoxicology, 29(3), 546–555. https://doi.org/10.1016/j.neuro.2008.04.006
Rice, Jennifer C., "Effects of "Lemongrass Factor" on Galleria Mellonella Hemocytes" (2021). MSU Graduate Theses. 3694.https://bearworks.missouristate.edu/theses/3694
Rowan, R., Moran, C., McCann, M., & Kavanagh, K. (2009). Use of Galleria mellonella larvae to evaluate the in vivo anti-fungal activity of [Ag2(mal)(phen)3]. Biometals : an international journal on the role of metal ions in biology, biochemistry, and medicine, 22(3), 461–467. https://doi.org/10.1007/s10534-008-9182-3
Szafranska, A. K., Oxley, A. P. A., Chaves-Moreno, D., Horst, S. A., Roßlenbroich, S., Peters, G., et al. (2014). High-Resolution Transcriptomic Analysis of the Adaptive Response of Staphylococcus Aureus During Acute and Chronic Phases of Osteomyelitis. mBio 5, e01775–14. doi: 10.1128/mBio.01775-14
Torres, M., Pinzón, E. N., Rey, F. M., Martinez, H., Parra Giraldo, C. M., & Celis Ramírez, A. M. (2020). Galleria mellonella as a Novelty in vivo Model of Host-Pathogen Interaction for Malassezia furfur CBS 1878 and Malassezia pachydermatis CBS 1879. Frontiers in Cellular and Infection Microbiology, 10. https://doi.org/10.3389/fcimb.2020.00199
Trevijano-Contador, N., & Zaragoza, O. (2018). Immune Response of Galleria mellonella against Human Fungal Pathogens. Journal of fungi (Basel, Switzerland), 5(1), 3. https://doi.org/10.3390/jof5010003
Tsai, C. J., Loh, J. M., & Proft, T. (2016). Galleria mellonella infection models for the study of bacterial diseases and for antimicrobial drug testing. Virulence, 7(3), 214–229. https://doi.org/10.1080/21505594.2015.1135289
Velegraki, A., Cafarchia, C., Gaitanis, G., Iatta, R., & Boekhout, T. (2015). Malassezia infections in humans and animals: pathophysiology, detection, and treatment. PLoS pathogens, 11(1), e1004523. https://doi.org/10.1371/journal.ppat.1004523
Wittwer, D., Franchini, A., Ottaviani, E., & Wiesner, A. (1999). Presence of IL-1- and TNF-like molecules in Galleria mellonella (Lepidoptera) haemocytes and in an insect cell line Fromestigmene acraea (Lepidoptera). Cytokine, 11(9), 637–642. https://doi.org/10.1006/cyto.1998.0481
Wojda, I., Staniec, B., Sułek, M., & Kordaczuk, J. (2020). The greater wax moth Galleria mellonella: biology and use in immune studies. Pathogens and disease, 78(9), ftaa057. https://doi.org/10.1093/femspd/ftaa057
Zhan L, Tang J, Sun M, Qin C. Animal Models for Tuberculosis in Translational and Precision Medicine. Front Microbiol. 2017 May 4;8:717. doi: 10.3389/fmicb.2017.00717. PMID: 28522990; PMCID: PMC5415616.
Published
How to Cite
Issue
Section
Copyright (c) 2022 Aadhya Subhash; Cathy Farrar
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Copyright holder(s) granted JSR a perpetual, non-exclusive license to distriute & display this article.