Structural Mechanisms and Therapeutic Solutions of the SARS-CoV2 Frameshifting Element
DOI:
https://doi.org/10.47611/jsrhs.v11i3.2952Keywords:
SARS-CoV2, COVID-19, RNA, frameshifting, pseudoknot, alternate conformationsAbstract
The Severe acute respiratory syndrome-related coronavirus-2 (SARS-CoV2) has caused the coronavirus disease 19 (COVID-19) worldwide pandemic. Despite the relative success of the various vaccines developed, emerging variants such as the delta and omicron strains present the need to find a more effective therapeutic solution. One such target is the frameshifting element, which is responsible for controlling the balance between proteins necessary both for defending against the host’s immune responses and for reproduction of the retrovirus. As it is one of the most highly conserved sequences in all strains of SARS-CoV2, the purpose of this review article is to summarize what is known about the structural and functional mechanisms of the frameshifting element, and the current advancements towards developing therapeutic solutions to this attractive target.
Downloads
References or Bibliography
CSSEGISandData. (n.d.). CSSEGISANDDATA/covid-19: Novel coronavirus (COVID-19) cases, provided by JHU CSSE. GitHub. Retrieved May 17, 2022, from https://github.com/CSSEGISandData/COVID-19
Centers for Disease Control and Prevention. (n.d.). Johnson & Johnson's Janssen COVID-19 vaccine overview and Safety. Centers for Disease Control and Prevention. Retrieved March 9, 2022, from https://www.cdc.gov/coronavirus/2019-ncov/vaccines/different-vaccines/janssen.html
Centers for Disease Control and Prevention. (n.d.). Pfizer-biontech COVID-19 vaccine overview and Safety. Centers for Disease Control and Prevention. Retrieved March 9, 2022, from https://www.cdc.gov/coronavirus/2019-ncov/vaccines/different-vaccines/Pfizer-BioNTech.html#:~:text=%E2%80%A2%20Based%20on%20evidence%20from,of%20being%20previously%20infected.
Katella, K. (2022, March 2). Comparing the COVID-19 vaccines: How are they different? Yale Medicine. Retrieved March 9, 2022, from https://www.yalemedicine.org/news/covid-19-vaccine-comparison.
Zhang, K., Zheludev, I. N., Hagey, R. J., Haslecker, R., Hou, Y. J., Kretsch, R., Pintilie, G. D., Rangan, R., Kladwang, W., Li, S., Wu, M. T.-P., Pham, E. A., Bernardin-Souibgui, C., Baric, R. S., Sheahan, T. P., D’Souza, V., Glenn, J. S., Chiu, W., & Das, R. (2021). Cryo-EM and antisense targeting of the 28-KDA frameshift stimulation element from the SARS-COV-2 RNA genome. Nature Structural & Molecular Biology, 28(9), 747–754. https://doi.org/10.1038/s41594-021-00653-y
Lan, T. C., Allan, M. F., Malsick, L. E., Woo, J. Z., Zhu, C., Zhang, F., Khandwala, S., Nyeo, S. S., Sun, Y., Guo, J. U., Bathe, M., Näär, A., Griffiths, A., & Rouskin, S. (2022). Secondary structural ensembles of the SARS-COV-2 RNA genome in infected cells. Nature Communications, 13(1). https://doi.org/10.1038/s41467-022-28603-2
Manfredonia, I., Nithin, C., Ponce-Salvatierra, A., Ghosh, P., Wirecki, T. K., Marinus, T., Ogando, N. S., Snijder, E. J., van Hemert, M. J., Bujnicki, J. M., & Incarnato, D. (2020). Genome-wide mapping of SARS-COV-2 RNA structures identifies therapeutically-relevant elements. Nucleic Acids Research, 48(22), 12436–12452. https://doi.org/10.1093/nar/gkaa1053
Giedroc, D. P., & Cornish, P. V. (2009). Frameshifting RNA pseudoknots: Structure and mechanism. Virus Research, 139(2), 193–208. https://doi.org/10.1016/j.virusres.2008.06.008
Kelly, J. A., Woodside, M. T., & Dinman, J. D. (2021). Programmed −1 ribosomal frameshifting in Coronaviruses: A therapeutic target. Virology, 554, 75–82. https://doi.org/10.1016/j.virol.2020.12.010
Omar, S. I., Zhao, M., Sekar, R. V., Moghadam, S. A., Tuszynski, J. A., & Woodside, M. T. (2021). Modeling the structure of the frameshift-stimulatory pseudoknot in SARS-COV-2 reveals multiple possible conformers. PLOS Computational Biology, 17(1). https://doi.org/10.1371/journal.pcbi.1008603
Bhatt, P. R., Scaiola, A., Loughran, G., Leibundgut, M., Kratzel, A., Meurs, R., Dreos, R., O’Connor, K. M., McMillan, A., Bode, J. W., Thiel, V., Gatfield, D., Atkins, J. F., & Ban, N. (2021). Structural basis of ribosomal frameshifting during translation of the SARS-COV-2 RNA genome. Science, 372(6548), 1306–1313. https://doi.org/10.1126/science.abf3546
Chen, Y., Tao, H., Shen, S., Miao, Z., Li, L., Jia, Y., Zhang, H., Bai, X., & Fu, X. (2020). A drug screening toolkit based on the –1 ribosomal frameshifting of SARS-COV-2. Heliyon, 6(8). https://doi.org/10.1016/j.heliyon.2020.e04793
Wacker, A., Weigand, J. E., Akabayov, S. R., Altincekic, N., Bains, J. K., Banijamali, E., Binas, O., Castillo-Martinez, J., Cetiner, E., Ceylan, B., Chiu, L.-Y., Davila-Calderon, J., Dhamotharan, K., Duchardt-Ferner, E., Ferner, J., Frydman, L., Fürtig, B., Gallego, J., Grün, J. T., … Zetzsche, H. (2020, December 16). Secondary structure determination of conserved SARS-COV-2 RNA elements by NMR spectroscopy. Nucleic acids research. Retrieved March 9, 2022, from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7736788/
Published
How to Cite
Issue
Section
Copyright (c) 2022 Varun Ajith; Vincent Pham
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Copyright holder(s) granted JSR a perpetual, non-exclusive license to distriute & display this article.