The Attenuation of Alcohol and Nicotine Induced Behaviors in Drosophila melanogaster by Sinomenine
DOI:
https://doi.org/10.47611/jsrhs.v11i3.2912Keywords:
Sinomenine, CREB, AddictionAbstract
The purpose of this experiment is to determine the efficacy of Sinomenine, an opioid receptor antagonist, in attenuating ethanol and nicotine induced behaviors in Drosophila melanogaster. While ethanol and nicotine are quite different in their direct mechanism of action, current research suggests that opiate reward, CREB-mediated transcription, and long-term potentiation are common pathways implicated in the development of various addictions. Due to its ability to antagonize the mu-opioid receptor, Sinomenine prevents endorphin binding, drug-induced CREB transcription, and consequent increase in dopamine production by tyrosine hydroxylase that leads to euphoria and addiction. Sinomenine may be particularly promising over other opioid receptor antagonists for sedative addictions due to its opioid-receptor independent anxiolytic effects. In a CAFE assay performed to measure preference through consumption of ethanol or nicotine, Sinomenine reverses both naive and conditioned preference for ethanol, as well as conditioned nicotine aversion. Measuring locomotion, Sinomenine attenuated both the ethanol and nicotine induced decreases in negative geotaxis exhibition in Drosophila melanogaster. Quantifying olfactory preference, Sinomenine reversed conditioned odor preference in a Y-maze, but not naive preference. Reflecting its effects on the CREB pathway, Sinomenine inhibited a nicotine-induced increase in cAMP, but did not significantly affect cAMP levels in ethanol treated Drosophila. According to these results, Sinomenine is particularly effective in attenuating conditioned ethanol or nicotine-induced behavior, and produces mixed results in terms of naive exposure. The natural chemosensory preferences or aversion of ethanol and nicotine may be independent of the CREB pathway, while developed preference may be directly dependent on it.
Downloads
References or Bibliography
Ali, Y. O., Escala, W., Ruan, K., & Zhai, R. G. (2011, March 11). Assaying locomotor, learning, and memory deficits in drosophila models of neurodegeneration. Journal of visualized experiments : JoVE. Retrieved January 7, 2022, from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3197301/
Bainton RJ, Tsai LT, Singh CM, Moore MS, Neckameyer WS, Heberlein U. Dopamine modulates acute responses to cocaine, nicotine and ethanol in Drosophila. Curr Biol. 2000 Feb 24;10(4):187-94. doi: 10.1016/s0960-9822(00)00336-5. PMID: 10704411.
Blaess, S. (n.d.). Mesolimbic Pathway. Mesolimbic Pathway - an overview | ScienceDirect Topics. https://www.sciencedirect.com/topics/neuroscience/mesolimbic-pathway.
Brody, T. (n.d.). Cyclic-AMP response element binding protein A. Retrieved May 30, 2022, from https://www.sdbonline.org/sites/fly/dbzhnsky/dcreba1.htm
Chan, P., & Lutfy, K. (2015, November 3). Molecular changes in opioid addiction: The role of Adenylyl Cyclase and Camp/PKA System. Progress in Molecular Biology and Translational Science. Retrieved May 30, 2022, from https://www.sciencedirect.com/science/article/abs/pii/S1877117315002070
Chvilicek, M. M., Titos, I., & Rothenfluh, A. (1AD, January 1). The neurotransmitters involved in drosophila alcohol-induced behaviors. Frontiers. Retrieved January 7, 2022, from https://www.frontiersin.org/articles/10.3389/fnbeh.2020.607700/full
Diegelmann, S., Jansen, A., Jois, S., Kastenholz, K., Velo Escarcena, L., Strudthoff, N., & Scholz, H. (2017, March 17). The capillary feeder assay measures food intake in drosophila melanogaster. Journal of visualized experiments : JoVE. Retrieved January 7, 2022, from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5408587/
Evans, Christopher J, and Catherine M Cahill. “Neurobiology of opioid dependence in creating addiction vulnerability.” F1000Research vol. 5 F1000 Faculty Rev-1748. 19 Jul. 2016, doi:10.12688/f1000research.8369.1
Fernández-Moreno, M. A., Farr, C. L., Kaguni, L. S., & Garesse, R. (2007). Drosophila melanogaster as a model system to study mitochondrial biology. Methods in molecular biology (Clifton, N.J.). Retrieved January 7, 2022, from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4876951/
Hales, K. G., Korey, C. A., Larracuente, A. M., & Roberts, D. M. (2015, November). Genetics on the fly: A Primer on the drosophila model system. Genetics. Retrieved January 7, 2022, from https://www.ncbi.nlm.nih.gov/pubmed/26564900
Jinying, O. (2018). Sinomenine Protects Against Morphine Dependence through the NMDAR1/CAMKII/CREB Pathway: A Possible Role of Astrocyte-Derived Exosomes. Molecules (Basel, Switzerland). https://pubmed.ncbi.nlm.nih.gov/30227624/.
Kampman K. M. (2005). New medications for the treatment of cocaine dependence. Psychiatry (Edgmont (Pa. : Township)), 2(12), 44–48.
Karras, A., & Kane, J. M. (2002, November 8). Naloxone reduces cigarette smoking. Life Sciences. Retrieved January 7, 2022, from https://www.sciencedirect.com/science/article/abs/pii/0024320580905627
Kaun, K. R., Azanchi, R., Maung, Z., Hirsh, J., & Heberlein, U. (2011, May). A drosophila model for alcohol reward. Nature neuroscience. Retrieved January 8, 2022, from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4249630/
Kida, S. (2012). A Functional Role for CREB as a Positive Regulator of Memory Formation and LTP. Experimental neurobiology. https://pubmed.ncbi.nlm.nih.gov/23319873/.
King, A. C., & Meyer, P. J. (2000, July 13). Naltrexone alteration of acute smoking response in nicotine-dependent subjects. Pharmacology Biochemistry and Behavior. Retrieved May 30, 2022, from https://www.sciencedirect.com/science/article/abs/pii/S0091305700002586
Koob, G. F., & Volkow, N. D. (2016, August). Neurobiology of addiction: A neurocircuitry analysis. The lancet. Psychiatry. Retrieved January 8, 2022, from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6135092/
Koyyada, R., Latchooman, N., Jonaitis, J., Ayoub, S. S., Corcoran, O., & Casalotti, S. O. (2018). Naltrexone Reverses Ethanol Preference and Protein Kinase C Activation in Drosophila melanogaster. Frontiers in physiology, 9, 175. https://doi.org/10.3389/fphys.2018.00175
Law PY, Reggio PH, Loh HH. Opioid receptors: toward separation of analgesic from undesirable effects. Trends Biochem Sci. 2013 Jun;38(6):275-82. doi: 10.1016/j.tibs.2013.03.003. Epub 2013 Apr 16. PMID: 23598157; PMCID: PMC3665630.
Lin, Y., Li, H., Peng, J., Li, C., Zhu, C., Zhou, Y., ... & Mo, Z. (2021). Decrease of morphine-CPP by sinomenine via mediation of tyrosine hydroxylase, NMDA receptor subunit 2B and opioid receptor in the zebrafish brain. Pakistan journal of pharmaceutical sciences, 34(5).
Lüscher, C. (2012). NMDA receptor-dependent long-term potentiation and long-term depression (LTP/LTD). Cold Spring Harbor perspectives in biology. https://pubmed.ncbi.nlm.nih.gov/22510460/.
Mattson CL, Tanz LJ, Quinn K, Kariisa M, Patel P, Davis NL. Trends and Geographic Patterns in Drug and Synthetic Opioid Overdose Deaths — United States, 2013–2019. MMWR Morb Mortal Wkly Rep 2021;70:202–207. DOI: http://dx.doi.org/10.15585/mmwr.mm7006a4
Meldrum, B. S. (n.d.). Glutamate as a neurotransmitter in the brain: review of physiology and pathology. The Journal of nutrition. https://pubmed.ncbi.nlm.nih.gov/10736372/.
Mirzoyan, Z., Sollazzo, M., Allocca, M., Valenza, A. M., Grifoni, D., & Bellosta, P. (1AD, January 1). Drosophila melanogaster: A model organism to study cancer. Frontiers. Retrieved May 30, 2022, from https://www.frontiersin.org/articles/10.3389/fgene.2019.00051/full
Morris, M., Shaw, A., Lambert, M., Perry, H. H., Lowenstein, E., Valenzuela, D., & Velazquez-Ulloa, N. A. (2018, June 14). Developmental nicotine exposure affects larval brain size and the adult dopaminergic system of drosophila melanogaster - BMC developmental biology. BioMed Central. Retrieved January 2, 2022, from https://bmcdevbiol.biomedcentral.com/articles/10.1186/s12861-018-0172-6
Murphy, J. A., Stein, I. S., Lau, C. G., Peixoto, R. T., Aman, T. K., Kaneko, N., Aromolaran, K., Saulnier, J. L., Popescu, G. K., Sabatini, B. L., Hell, J. W., & Zukin, R. S. (2014, January 15). Phosphorylation of ser1166 on Glun2b by PKA is critical to synaptic NMDA receptor function and ca2+ signaling in spines. Journal of Neuroscience. Retrieved January 7, 2022, from https://www.jneurosci.org/content/34/3/869
Ou, J., Zhou, Y., Li, C., Chen, Z., Li, H., Fang, M., Zhu, C., Huo, C., Yung, K. K.-L., Li, J., Luo, C., & Mo, Z. (2018, September 17). Sinomenine protects against morphine dependence through the NMDAR1/CAMKII/CREB pathway: A possible role of astrocyte-derived exosomes. Molecules (Basel, Switzerland). Retrieved January 7, 2022, from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6225372/#B9-molecules-23-02370
Pohl, J. (n.d.). Ethanol preference in drosophila melanogaster is driven by its caloric ... Retrieved January 7, 2022, from https://onlinelibrary.wiley.com/doi/10.1111/j.1530-0277.2012.01817.x
Scheffer, L. K., Xu, C. S., Januszewski, M., Lu, Z., Takemura, S.-ya, Hayworth, K. J., Huang, G. B., Shinomiya, K., Maitlin-Shepard, J., Berg, S., Clements, J., Hubbard, P. M., Katz, W. T., Umayam, L., Zhao, T., Ackerman, D., Blakely, T., Bogovic, J., Dolafi, T., … Plaza, S. M. (2020, September 3). A connectome and analysis of the adult drosophila central brain. eLife. Retrieved January 2, 2022, from https://elifesciences.org/articles/57443
ScienceDaily. (2015, February 4). How cocaine works in the brain, offers possibility of drug to treat addiction. ScienceDaily. Retrieved January 7, 2022, from https://www.sciencedaily.com/releases/2015/02/150204102730.htm
Shang, Y. (2015). Opioid receptors: Structural and mechanistic insights into pharmacology and signaling. European journal of pharmacology. https://pubmed.ncbi.nlm.nih.gov/25981301/.
Simonnet, M. M., Berthelot-Grosjean, M., & Grosjean, Y. (2014, June 12). Testing drosophila olfaction with aΩ Y-Maze Assay. Journal of visualized experiments : JoVE. Retrieved January 8, 2022, from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4189430/
Swinford-Jackson SE, O'Brien CP, Kenny PJ, Vanderschuren LJMJ, Unterwald EM, Pierce RC. The Persistent Challenge of Developing Addiction Pharmacotherapies. Cold Spring Harb Perspect Med. 2021 Nov 1;11(11):a040311. doi: 10.1101/cshperspect.a040311. PMID: 32601131; PMCID: PMC8559539.
Tiwari, R. K., Sharma, V., Pandey, R. K., & Shukla, S. S. (2020, March 31). Nicotine addiction: Neurobiology and mechanism. Journal of pharmacopuncture. Retrieved January 7, 2022, from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7163392/
Turton, S., Myers, J. F. M., Mick, I., Colasanti, A., Venkataraman, A., Durant, C., Waldman, A., Brailsford, A., Parkin, M. C., Dawe, G., Rabiner, E. A., Gunn, R. N., Lightman, S. L., Nutt, D. J., & Lingford-Hughes, A. (2018, June 25). Blunted endogenous opioid release following an oral dexamphetamine challenge in abstinent alcohol-dependent individuals. Nature News. Retrieved January 7, 2022, from https://www.nature.com/articles/s41380-018-0107-4
Ueno, K., Naganos, S., Hirano, Y., Horiuchi, J., & Saitoe, M. (2013, January 1). Long-term enhancement of synaptic transmission between antennal lobe and mushroom body in cultured drosophila brain. The Journal of physiology. Retrieved January 7, 2022, from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3630786/
Walters, C. (n.d.). Mu-opioid receptor and CREB activation are required for nicotine reward. Neuron. Retrieved May 30, 2022, from https://pubmed.ncbi.nlm.nih.gov/15953421/
Wang MH;Chang CK;Cheng JH;Wu HT;Li YX;Cheng JT; (n.d.). Activation of opioid MU-receptor by Sinomenine in cell and mice. Neuroscience letters. Retrieved January 7, 2022, from https://pubmed.ncbi.nlm.nih.gov/18692550/
Wang, H., Xu, J., Lazarovici, P., Quirion, R., & Zheng, W. (1AD, January 1). CAMP response element-binding protein (CREB): A possible signaling molecule link in the pathophysiology of schizophrenia. Frontiers. Retrieved January 7, 2022, from https://www.frontiersin.org/articles/10.3389/fnmol.2018.00255/full
Wei, J. (2020). Analgesic Mechanism of Sinomenine against Chronic Pain. Pain research & management. https://pubmed.ncbi.nlm.nih.gov/32454918/.
Xue, Y., & Domino, E. F. (2007, December 23). Tobacco/nicotine and endogenous brain opioids. Progress in Neuro-Psychopharmacology and Biological Psychiatry. Retrieved May 30, 2022, from https://www.sciencedirect.com/science/article/abs/pii/S027858460700440X
Published
How to Cite
Issue
Section
Copyright (c) 2022 Jacob Federici
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Copyright holder(s) granted JSR a perpetual, non-exclusive license to distriute & display this article.