Machine Learning in Alzheimer’s Disease: Prognostic Prediction via Neuroimaging and Numerical Data

Authors

  • Ydathip Phetchrungruengphol The Newton Sixth Form School
  • Phasit Thanitkul The Newton Sixth Form School
  • Chavakorn Arunkunarax The Newton Sixth Form School
  • Thanapol Wongtharua The Newton Sixth Form School
  • Kunapas Sumpunwetchakul The Newton Sixth Form School
  • Jetnipat Kongsirirungruang The Newton Sixth Form School
  • Niracha Janavatara The Newton Sixth Form School
  • Witawin Sittisirinukul The Newton Sixth Form School
  • Chutikarn Kanchana-art The Newton Sixth Form School
  • Pingpan Krutdumrongchai The Newton Sixth Form School
  • Tansiri Praditphonlert The Newton Sixth Form School
  • Kanokkorn Pitayakornpakdee The Newton Sixth Form School

DOI:

https://doi.org/10.47611/jsrhs.v11i3.2878

Keywords:

brain imaging, support vector machine (SVM), presymptomatic diagnosis, genetic risks, Alzheimer's Disease

Abstract

Alzheimer's disease (AD) is often detected too late or inaccurately in clinical practice. Therefore, improvement in the current methods of AD detection will provide opportunities for early intervention, symptomatic treatment, and, overall, better quality of patients’ and their caregivers’ lives. The paper is an in-depth study of how functional brain imaging and support vector machine (SVM) could be utilized to detect the risk for AD which works by assessing and plotting data into multi-dimensional graphs for various results. It aims to identify patients in presymptomatic stages for early treatment to delay or prevent progressive cognitive decline and disease. With knowledge of machine learning, our medical tool is a breakthrough in the methodology of AD detection. The future of our tool requires a substantive amount of brain scan data for the machine learning algorithm to produce reliable results, so further research in this field of study is crucial and strongly encouraged. 

 

Downloads

Download data is not yet available.

References or Bibliography

Aβ40 assays. Quanterix. (2022). https://www.quanterix.com/simoa-assay-kits/ab40/

Aβ42-in-2: AΒ42 inhibitor: Medchemexpress. MedchemExpress.com. (n.d.). https://www.medchemexpress.com/a%CE%B242-in-2.html

Amyloid β protein: AΒ40 inhibits AΒ42 ... - pubs.acs.org. (n.d.).https://doi.org/10.1021/ja8092604

Applications of amyloid, TAU, and neuroinflammation pet ... (n.d.). https://doi.org/10.1002/hbm.24782

BioMed Central. (2018). Secondary prevention of Alzheimer's dementia: neuroimaging contributions - Alzheimer's Research & Therapy. https://doi.org/10.1186/s13195-018-0438-z

Brain : a journal of neurology, 2017 Mar ; Relationships between flortaucipir PET tau binding and amyloid burden, clinical diagnosis, age and cognition. https://doi.org/10.1093%2Fbrain%2Faww334

Brain scans. Stanford Health Care (SHC) - Stanford Medical Center. (2017). https://stanfordhealthcare.org/medical-conditions/brain-and-nerves/dementia/diagnosis/brain-scans.html

Campbell MR;Ashrafzadeh-Kian S;Petersen RC;Mielke MM;Syrjanen JA;van Harten AC;Lowe VJ;Jack CR;Bornhorst JA;Algeciras-Schimnich A; (n.d.). P-Tau/AΒ42 and AΒ42/40 ratios in CSF are equally predictive of amyloid PET status. Alzheimer's & dementia (Amsterdam, Netherlands). https://doi.org/10.1002/dad2.12190

Cortés-Blanco A;Prieto-Yerro C;Martínez-Lázaro R;Zamora J;Jiménez-Huete A;Haberkamp M;Pohly J;Enzmann H;Zinserling J;Strassmann V;Broich K; (n.d.). Florbetapir (18F) for brain amyloid positron emission tomography: Highlights on the European Marketing Approval. Alzheimer's & dementia : the journal of the Alzheimer's Association. https://doi.org/10.1016/j.jalz.2013.09.007

Cukalevski, R., Yang, X., Meisl, G., Weininger, U., Bernfur, K., Frohm, B., Knowles, T. P. J., & Linse, S. (2015). The AΒ40 and AΒ42 peptides self-assemble into separate homomolecular fibrils in binary mixtures but cross-react during primary nucleation. Chemical Science. https://doi.org/10.1039/c4sc02517b

Deckers, K., Cadar, D., van Boxtel, M. P. J., Verhey, F. R. J., Steptoe, A., & Köhler, S. (2019). Modifiable risk factors explain socioeconomic inequalities in dementia risk: Evidence from a population-based prospective cohort study. Journal of Alzheimer's Disease. https://doi.org/10.3233/JAD-190541

Doraiswamy, P., Sperling, R., Johnson, K., Reiman, E., Wong, T., Sabbagh, M., Sadowsky, C., Fleisher, A., Carpenter, A., Joshi, A., Lu, M., Grundman, M., Mintun, M., Skovronsky, D., Pontecorvo, M., Ranjan Marwan Geoffrey Richard F Mildred V Beth

Emmie Gus Duara Sabbagh Lawrence Ahern Holub Farmer Safirste, Duara, R., Ahern, G. L., Holub, R., … Williamson, J. (1970). [pdf] florbetapir F 18 amyloid PET and 36-month cognitive decline:a prospective Multicenter Study: Semantic scholar. undefined. https://doi.org/10.1038/mp.2014.9

Fillenbaum, G. G., van Belle, G., Morris, J. C., Mohs, R. C., Mirra, S. S., Davis, P. C., Tariot, P. N., Silverman, J. M., Clark, C. M., Welsh-Bohmer, K. A., & Heyman, A. (2008). Consortium to establish a registry for Alzheimer's disease (CERAD): The

First Twenty Years. Alzheimer's & dementia : the journal of the Alzheimer's Association. https://doi.org/10.1016%2Fj.jalz.2007.08.005

Hansson, O., Lehmann, S., Otto, M., Zetterberg, H., & Lewczuk, P. (2019). Advantages and disadvantages of the use of the CSF amyloid β (AΒ) 42/40 ratio in the diagnosis of alzheimer's disease - alzheimer's research & therapy. BioMed Central. https://doi.org/10.1186/s13195-019-0485-0

JAMA. (2011). Use of florbetapir-PET for imaging beta-amyloid pathology. https://doi.org/10.1001%2Fjama.2010.2008

James, O. G., Doraiswamy, P. M., & Borges-Neto, S. (n.d.). PET imaging of tau pathology in alzheimer's disease and Tauopathies. Frontiers. https://doi.org/10.3389/fneur.2015.00038

K;, O. N. Y. (n.d.). Florbetapir (18F), a pet imaging agent that binds to amyloid plaques for the potential detection of alzheimer's disease. IDrugs : the investigational drugs journal. https://pubmed.ncbi.nlm.nih.gov/21154149/

Lois, C., Gonzalez, I., Johnson, K. A., & Price, J. C. (2019). PET imaging of TAU Protein Targets: A Methodology Perspective. Brain imaging and behavior. https://doi.org/10.1007%2Fs11682-018-9847-7

Lundeen, T. F., Author AffiliationsFrom the Department of Medical Imaging, A, W., VL, V., Al, E., JC, M., J, S., WE, K., I, D., CA, M., MA, M., KA, J., S, M., CC, R., Jr, L. R., Healthcare, G. E., Lilly, E., Piramal, DF, W., … Sugi, M. D. (2018). Signs and Artifacts in Amyloid PET. https://doi.org/10.1148/rg.2018180160

Machine learning. International Business Machines (IBM Cloud Education). (2020). https://www.ibm.com/cloud/learn/machine-learning

Mattsson, N., Insel, P. S., Landau, S., Jagust, W., Donohue, M., Shaw, L. M., Trojanowski, J. Q., Zetterberg, H., Blennow, K., Weiner, M., & Alzheimer's Disease Neuroimaging Initiative. (2014). Diagnostic accuracy of CSF AB42 and Florbetapir Pet for Alzheimer's disease. Annals of clinical and translational neurology. https://doi.org/10.1002%2Facn3.81

Mufson, E. J., Malek-Ahmadi, M., Perez, S. E., & Chen, K. (2016). Braak staging, plaque pathology, and APOE status in elderly persons without cognitive impairment. Neurobiology of aging. https://doi.org/10.1016%2Fj.neurobiolaging.2015.10.012

National Institute on Aging (NIA). (2021). What Is Dementia? Symptoms, Types, And Diagnosis. https://www.nia.nih.gov/health/what-is-dementia

Neurology. (2020). Association of amyloid-β CSF/PET discordance and tau load 5 years later. https://doi.org/10.1212/WNL.0000000000010739

Okamura N;Harada R;Furumoto S;Arai H;Yanai K;Kudo Y; (n.d.). Tau Pet Imaging in Alzheimer's disease. Current neurology and neuroscience reports. https://doi.org/10.1007/s11910-014-0500-6

OUP Academic. (2017). Association between tau deposition and antecedent amyloid-β accumulation rates in normal and early symptomatic individuals. https://doi.org/10.1093/brain/awx046

Pankratz N;Byder L;Halter C;Rudolph A;Shults CW;Conneally PM;Foroud T;Nichols WC; (n.d.). Presence of an APOE4 allele results in significantly earlier onset of parkinson's disease and a higher risk with dementia. Movement disorders : official journal of the Movement Disorder Society.https://doi.org/10.1002/mds.20663

Pontecorvo MJ;Devous MD;Navitsky M;Lu M;Salloway S;Schaerf FW;Jennings D;Arora AK;McGeehan A;Lim NC;Xiong H;Joshi AD;Siderowf A;Mintun MA; ; (n.d.). Relationships between Flortaucipir Pet Tau binding and amyloid burden, clinical diagnosis, age and cognition. Brain : a journal of neurology. https://doi.org/10.1093/brain/aww334

Presence of an APOE4 allele results in significantly ... (n.d.).

https://doi.org/10.1002/mds.20663

Robertson, S. (2018). What are amyloid plaques? News. https://www.news-medical.net/health/What-are-Amyloid-Plaques.aspx#:~:text=Amyloid%20plaques%20form%20when%20pieces,enzymes%20to%20produce%20beta%2Damyloid

Rpubs. (N.D.). RPubs - Image classification using SVM. https://rpubs.com/Sharon_1684/454441

Sauvée M;DidierLaurent G;Latarche C;Escanyé MC;Olivier JL;Malaplate-Armand C; (n.d.). Additional use of AΒ₄₂/AΒ₄₀ ratio with cerebrospinal fluid biomarkers P-Tau and AΒ₄₂ increases the level of evidence of alzheimer's disease pathophysiological process in routine practice. Journal of Alzheimer's disease : JAD. https://doi.org/10.3233/JAD-131838

ScienceDaily. (2007). Low education level linked to Alzheimer's, study shows. ScienceDaily. https://www.sciencedaily.com/releases/2007/10/071001172855.htm

Shanmukh, V. (2021). Image classification using machine learning-support vector machine(SVM). Medium.https://medium.com/analytics-vidhya/image-classification-using-machine-learning-support-vector-machine-svm-dc7a0ec92e01

Shorena Janelidze, P. D. (2021). Head-to-head comparison of 8 plasma amyloid-β 42/40 assays in Alzheimer's disease. JAMA

Neurology. https://doi.org/10.1001/jamaneurol.2021.3180

The First Twenty Years. Alzheimer's & dementia : the journal of the Alzheimer's Association. https://doi.org/10.1016%2Fj.jalz.2007.08.005

Therriault, J., Benedet, A. L., Pascoal, T. A., Mathotaarachchi, S., Savard, M., Chamoun, M., Thomas, E., Kang, M. S., Lussier, F., Tissot, C., Soucy, J.-P., Massarweh, G., Rej, S., Saha-Chaudhuri, P., Poirier, J., Gauthier, S., & Rosa-Neto, P. (2020). APOEε4 potentiates the relationship between amyloid-β and tau pathologies. Nature News. https://doi.org/10.1038/s41380-020-0688-6

Topalovic, M., Burgel, P., Das, N., Daenen, M. (2019). Artificial intelligence outperforms pulmonologists in the interpretation of pulmonary function tests. https://www.researchgate.net/publication/334587622_Artificial_intelligence_outperforms_pulmonologists_in_the_interpretation_of_pulmonary_function_tests

What is Alzheimer's? (n.d.). https://www.alz.org/alzheimers-dementia/what-is-alzheimers#:~:text=Alzheimer's%20is%20not%20a%20normal,to%20as%20early%2Donset%20Alzheimer's

World Health Organization. (2021). Dementia. World Health Organization. https://www.who.int/news-room/fact-sheets/detail/dementia

Yang, L., Author AffiliationsFrom the Division of Medical Imaging Products (L.Y., Steele, N. Z. R., Others, M. W. W. and, O’Brien, P. L. A. and K. L., L. J. Abu-Raddad and Others, Others, E. T. and, & Others, N. A. and. (1970). Brain amyloid imaging - FDA approval of Florbetapir F18 Injection: Nejm. New England Journal of Medicine. https://doi.org/10.1056/nejmp1208061

YouTube. (2019). Support Vector Machines Part 1 (of 3): Main Ideas!!! YouTube. https://www.youtube.com/watch?v=efR1C6CvhmE

Published

08-31-2022

How to Cite

Phetchrungruengphol, Y., Thanitkul, P., Arunkunarax, C., Wongtharua, T., Sumpunwetchakul, K., Kongsirirungruang, J., Janavatara, N. ., Sittisirinukul, W., Kanchana-art, C., Krutdumrongchai, P., Praditphonlert, T., & Pitayakornpakdee, K. . (2022). Machine Learning in Alzheimer’s Disease: Prognostic Prediction via Neuroimaging and Numerical Data. Journal of Student Research, 11(3). https://doi.org/10.47611/jsrhs.v11i3.2878

Issue

Section

HS Review Articles