Interaction Between Immune and Cancer Cells and Promising CAR T-cell Therapy
DOI:
https://doi.org/10.47611/jsrhs.v11i3.2866Keywords:
Cancer, Immune cells, Immune system, T cells, CD8⁺cytotoxic T cells, CD4⁺ helper T cells, Regulatory T cells, New Immunotherapy, Cancer cells, Chimeric Antigen Receptor (CAR), CAR T-cells, CAR T-cell therapyAbstract
CD8⁺cytotoxic T cells, CD4⁺ helper T cells, and regulatory T cells interact differently with cancer. CD8⁺ cytotoxic T cells recognize the antigens presented by cancer cells and kill cancer cells in various ways. CD4⁺ helper T cells recruit other immune cells and promote them to destroy cancer cells. On the other hand, regulatory T cells suppress T cell proliferation and the immune response of both CD8⁺ cytotoxic T cells and CD4⁺ helper T cells. This suppressive mechanism often leads to the progression of cancer. These T cell-cancer cell interactions can often render conventional cancer treatments ineffective, leaving a need for new and improved therapies. Chimeric antigen receptor (CAR) T-cell therapy has been an emerging immunotherapy especially against B cell cancers. While CAR T-cell therapy has shown some successful cases, there are still limitations in CAR T-cell therapy that need to be overcome.
Downloads
References or Bibliography
Alberts B, Johnson A, Lewis J, et al. Molecular Biology of the Cell. 4th edition. New York: Garland Science; 2002. Helper T Cells and Lymphocyte Activation. Available from: https://www.ncbi.nlm.nih.gov/books/NBK26827/
American Cancer Society. (2022, March 1). CAR T-cell Therapy and Its Side Effects. Retrieved from https://www.cancer.org/treatment/treatments-and-side-effects/treatment-types/immunotherapy/car-t-cell1.html
Beyer, M., & Schultze, J. L. (2006). Regulatory T cells in cancer. Blood, 108(3), 804–811. https://doi.org/10.1182/blood-2006-02-002774
Cho, J. H., Okuma, A., Al-Rubaye, D., Intisar, E., Junghans, R. P., & Wong, W. W. (2018). Engineering Axl specific CAR and SynNotch receptor for cancer therapy. Scientific Reports, 8(1), 3846. https://doi.org/10.1038/s41598-018-22252-6
Davidsson, S., Ohlson, A.-L., Andersson, S.-O., Fall, K., Meisner, A., Fiorentino, M., Andrén, O., & Rider, J. R. (2013). CD4 helper T cells, CD8 cytotoxic T cells, and FOXP3+ regulatory T cells with respect to lethal prostate cancer. Modern Pathology, 26(3), 448–455. https://doi.org/10.1038/modpathol.2012.164
Han, D., Xu, Z., Zhuang, Y., Ye, Z., & Qian, Q. (2021). Current Progress in CAR-T Cell Therapy for Hematological Malignancies. Journal of Cancer, 12(2), 326–334. https://doi.org/10.7150/jca.48976
Huang, R., Li, X., He, Y., Zhu, W., Gao, L., Liu, Y., Gao, L., Wen, Q., Zhong, J. F., Zhang, C., & Zhang, X. (2020). Recent advances in CAR-T cell engineering. Journal of Hematology & Oncology, 13(1), 86. https://doi.org/10.1186/s13045-020-00910-5
Kawai, O., Ishii, G., Kubota, K., Murata, Y., Naito, Y., Mizuno, T., Aokage, K., Saijo, N., Nishiwaki, Y., Gemma, A., Kudoh, S., & Ochiai, A. (2008). Predominant infiltration of macrophages and CD8 + T Cells in cancer nests is a significant predictor of survival in stage IV nonsmall cell lung cancer. Cancer, 113(6), 1387–1395. https://doi.org/10.1002/cncr.23712
Labanieh, L., Majzner, R. G., & Mackall, C. L. (2018). Programming CAR-T cells to kill cancer. Nature Biomedical Engineering, 2(6), 377–391. https://doi.org/10.1038/s41551-018-0235-9
Majzner, R. G., & Mackall, C. L. (2018). Tumor Antigen Escape from CAR T-cell Therapy. Cancer Discovery, 8(10), 1219–1226. https://doi.org/10.1158/2159-8290.CD-18-0442
Martinez, M., & Moon, E. K. (2019). CAR T Cells for Solid Tumors: New Strategies for Finding, Infiltrating, and Surviving in the Tumor Microenvironment. Frontiers in Immunology, 10, 128. https://doi.org/10.3389/fimmu.2019.00128
Martínez-Lostao, L., Anel, A., & Pardo, J. (2015). How Do Cytotoxic Lymphocytes Kill Cancer Cells? Clinical Cancer Research, 21(22), 5047–5056. https://doi.org/10.1158/1078-0432.CCR-15-0685
Maude, S. L., Laetsch, T. W., Buechner, J., Rives, S., Boyer, M., Bittencourt, H., Bader, P., Verneris, M. R., Stefanski, H. E., Myers, G. D., Qayed, M., De Moerloose, B., Hiramatsu, H., Schlis, K., Davis, K. L., Martin, P. L., Nemecek, E. R., Yanik, G. A., Peters, C., … Grupp, S. A. (2018). Tisagenlecleucel in Children and Young Adults with B-Cell Lymphoblastic Leukemia. The New England Journal of Medicine, 378(5), 439–448. https://doi.org/10.1056/NEJMoa1709866
Murfin, K. (2021, April 6). 3 things to know about the tumor microenvironment. The University of Texas MD Anderson Cancer Center. Retrieved from https://www.mdanderson.org/cancerwise/what-is-the-tumor-microenvironment-3-things-to-know.h00-159460056.html#:~:text=The%20tumor%20microenvironment%20is%20the,other%2C%20either%20positively%20or%20negatively
National Cancer Institute. (n.d.). Bicistronic Chimeric Antigen Receptor (CAR) Constructs Targeting CD19 and CD20. Retrieved from https://techtransfer.cancer.gov/pdf/e-205-2018.pdf
National Cancer Institute. (2020, September 25). Cancer Statistics. U.S. Department of Health and Human Services, National Institutes of Health. Retrieved from https://www.cancer.gov/about-cancer/understanding/statistics
National Cancer Institute. (2021, May 5). What is Cancer?. U.S. Department of Health and Human Services, National Institutes of Health. Retrieved from
https://www.cancer.gov/about-cancer/understanding/what-is-cancer
Neelapu, S. S., Locke, F. L., Bartlett, N. L., Lekakis, L. J., Miklos, D. B., Jacobson, C. A., Braunschweig, I., Oluwole, O. O., Siddiqi, T., Lin, Y., Timmerman, J. M., Stiff, P. J., Friedberg, J. W., Flinn, I. W., Goy, A., Hill, B. T., Smith, M. R., Deol, A., Farooq, U., … Go, W. Y. (2017). Axicabtagene Ciloleucel CAR T-Cell Therapy in Refractory Large B-Cell Lymphoma. New England Journal of Medicine, 377(26), 2531–2544. https://doi.org/10.1056/NEJMoa1707447
Qu, J., Mei, Q., Chen, L., & Zhou, J. (2021). Chimeric antigen receptor (CAR)-T-cell therapy in non-small-cell lung cancer (NSCLC): Current status and future perspectives. Cancer Immunology, Immunotherapy, 70(3), 619–631. https://doi.org/10.1007/s00262-020-02735-0
Raskov, H., Orhan, A., Christensen, J. P., & Gögenur, I. (2021). Cytotoxic CD8+ T cells in cancer and cancer immunotherapy. British Journal of Cancer, 124(2), 359–367. https://doi.org/10.1038/s41416-020-01048-4
Reiner, S. L. (2007). Development in Motion: Helper T Cells at Work. Cell, 129(1), 33–36. https://doi.org/10.1016/j.cell.2007.03.019
Saleh, R., & Elkord, E. (2020). FoxP3+ T regulatory cells in cancer: Prognostic biomarkers and therapeutic targets. Cancer Letters, 490, 174–185. https://doi.org/10.1016/j.canlet.2020.07.022
Sterner, R. C., & Sterner, R. M. (2021). CAR-T cell therapy: Current limitations and potential strategies. Blood Cancer Journal, 11(4), 69. https://doi.org/10.1038/s41408-021-00459-7
Tanaka, A., & Sakaguchi, S. (2017). Regulatory T cells in cancer immunotherapy. Cell Research, 27(1), 109–118. https://doi.org/10.1038/cr.2016.151
Togashi, Y., & Nishikawa, H. (2017). Regulatory T Cells: Molecular and Cellular Basis for Immunoregulation. In A. Yoshimura (Ed.), Emerging Concepts Targeting Immune Checkpoints in Cancer and Autoimmunity (Vol. 410, pp. 3–27). Springer International Publishing. https://doi.org/10.1007/82_2017_58
Togashi, Y., Shitara, K., & Nishikawa, H. (2019). Regulatory T cells in cancer immunosuppression—Implications for anticancer therapy. Nature Reviews Clinical Oncology, 16(6), 356–371. https://doi.org/10.1038/s41571-019-0175-7
U.S. Food & Drug Administration. (2021, June 14). KYMRIAH (tisagenlecleucel). Retrieved from
https://www.fda.gov/vaccines-blood-biologics/cellular-gene-therapy-products/kymriah-tisagenlecleucel
U.S. Food & Drug Administration. (2021, October 14). FDA D.I.S.C.O. Burst Edition: FDA approval of Tecartus (brexucabtagene autolecucel) for adult patients with relapsed or refractory B-cell precursor acute lymphoblastic leukemia. Retrieved from https://www.fda.gov/drugs/resources-information-approved-drugs/fda-disco-burst-edition-fda-approval-tecartus-brexucabtagene-autoleucel-adult-patients-relapsed-or
U.S. Food & Drug Administration. (2022, April 14). YESCARTA (axicabtagene ciloleucel). Retrieved from https://www.fda.gov/vaccines-blood-biologics/cellular-gene-therapy-products/yescarta-axicabtagene-ciloleucel
Vinay, D. S., Ryan, E. P., Pawelec, G., Talib, W. H., Stagg, J., Elkord, E., Lichtor, T., Decker, W. K., Whelan, R. L., Kumara, H. M. C. S., Signori, E., Honoki, K., Georgakilas, A. G., Amin, A., Helferich, W. G., Boosani, C. S., Guha, G., Ciriolo, M. R., Chen, S., … Kwon, B. S. (2015). Immune evasion in cancer: Mechanistic basis and therapeutic strategies. Seminars in Cancer Biology, 35, S185–S198. https://doi.org/10.1016/j.semcancer.2015.03.004
Wang, R.-F. (2008). CD8+ regulatory T cells, their suppressive mechanisms, and regulation in cancer. Human Immunology, 69(11), 811–814. https://doi.org/10.1016/j.humimm.2008.08.276
Workman, C. J., Szymczak-Workman, A. L., Collison, L. W., Pillai, M. R., & Vignali, D. A. A. (2009). The development and function of regulatory T cells. Cellular and Molecular Life Sciences, 66(16), 2603–2622. https://doi.org/10.1007/s00018-009-0026-2
World Health Organization. (2022, February 3). Cancer. Retrieved from https://www.who.int/news-room/fact-sheets/detail/cancer
Zhang, C., Liu, J., Zhong, J. F., & Zhang, X. (2017). Engineering CAR-T cells. Biomarker Research, 5(1), 22. https://doi.org/10.1186/s40364-017-0102-y
Zhao, J., Song, Y., & Liu, D. (2019). Clinical trials of dual-target CAR T cells, donor-derived CAR T cells, and universal CAR T cells for acute lymphoid leukemia. Journal of Hematology & Oncology, 12(1), 17. https://doi.org/10.1186/s13045-019-0705-x
Published
How to Cite
Issue
Section
Copyright (c) 2022 Hyeonjee Rho; Haley Halasz
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Copyright holder(s) granted JSR a perpetual, non-exclusive license to distriute & display this article.