Interaction Between Immune and Cancer Cells and Promising CAR T-cell Therapy

Authors

  • Hyeonjee Rho Maine Central Institute
  • Haley Halasz

DOI:

https://doi.org/10.47611/jsrhs.v11i3.2866

Keywords:

Cancer, Immune cells, Immune system, T cells, CD8⁺cytotoxic T cells, CD4⁺ helper T cells, Regulatory T cells, New Immunotherapy, Cancer cells, Chimeric Antigen Receptor (CAR), CAR T-cells, CAR T-cell therapy

Abstract

CD8⁺cytotoxic T cells, CD4⁺ helper T cells, and regulatory T cells interact differently with cancer. CD8⁺ cytotoxic T cells recognize the antigens presented by cancer cells and kill cancer cells in various ways. CD4⁺ helper T cells recruit other immune cells and promote them to destroy cancer cells. On the other hand, regulatory T cells suppress T cell proliferation and the immune response of both CD8⁺ cytotoxic T cells and CD4⁺ helper T cells. This suppressive mechanism often leads to the progression of cancer. These T cell-cancer cell interactions can often render conventional cancer treatments ineffective, leaving a need for new and improved therapies. Chimeric antigen receptor (CAR) T-cell therapy has been an emerging immunotherapy especially against B cell cancers. While CAR T-cell therapy has shown some successful cases, there are still limitations in CAR T-cell therapy that need to be overcome.

Downloads

Download data is not yet available.

References or Bibliography

Alberts B, Johnson A, Lewis J, et al. Molecular Biology of the Cell. 4th edition. New York: Garland Science; 2002. Helper T Cells and Lymphocyte Activation. Available from: https://www.ncbi.nlm.nih.gov/books/NBK26827/

American Cancer Society. (2022, March 1). CAR T-cell Therapy and Its Side Effects. Retrieved from https://www.cancer.org/treatment/treatments-and-side-effects/treatment-types/immunotherapy/car-t-cell1.html

Beyer, M., & Schultze, J. L. (2006). Regulatory T cells in cancer. Blood, 108(3), 804–811. https://doi.org/10.1182/blood-2006-02-002774

Cho, J. H., Okuma, A., Al-Rubaye, D., Intisar, E., Junghans, R. P., & Wong, W. W. (2018). Engineering Axl specific CAR and SynNotch receptor for cancer therapy. Scientific Reports, 8(1), 3846. https://doi.org/10.1038/s41598-018-22252-6

Davidsson, S., Ohlson, A.-L., Andersson, S.-O., Fall, K., Meisner, A., Fiorentino, M., Andrén, O., & Rider, J. R. (2013). CD4 helper T cells, CD8 cytotoxic T cells, and FOXP3+ regulatory T cells with respect to lethal prostate cancer. Modern Pathology, 26(3), 448–455. https://doi.org/10.1038/modpathol.2012.164

Han, D., Xu, Z., Zhuang, Y., Ye, Z., & Qian, Q. (2021). Current Progress in CAR-T Cell Therapy for Hematological Malignancies. Journal of Cancer, 12(2), 326–334. https://doi.org/10.7150/jca.48976

Huang, R., Li, X., He, Y., Zhu, W., Gao, L., Liu, Y., Gao, L., Wen, Q., Zhong, J. F., Zhang, C., & Zhang, X. (2020). Recent advances in CAR-T cell engineering. Journal of Hematology & Oncology, 13(1), 86. https://doi.org/10.1186/s13045-020-00910-5

Kawai, O., Ishii, G., Kubota, K., Murata, Y., Naito, Y., Mizuno, T., Aokage, K., Saijo, N., Nishiwaki, Y., Gemma, A., Kudoh, S., & Ochiai, A. (2008). Predominant infiltration of macrophages and CD8 + T Cells in cancer nests is a significant predictor of survival in stage IV nonsmall cell lung cancer. Cancer, 113(6), 1387–1395. https://doi.org/10.1002/cncr.23712

Labanieh, L., Majzner, R. G., & Mackall, C. L. (2018). Programming CAR-T cells to kill cancer. Nature Biomedical Engineering, 2(6), 377–391. https://doi.org/10.1038/s41551-018-0235-9

Majzner, R. G., & Mackall, C. L. (2018). Tumor Antigen Escape from CAR T-cell Therapy. Cancer Discovery, 8(10), 1219–1226. https://doi.org/10.1158/2159-8290.CD-18-0442

Martinez, M., & Moon, E. K. (2019). CAR T Cells for Solid Tumors: New Strategies for Finding, Infiltrating, and Surviving in the Tumor Microenvironment. Frontiers in Immunology, 10, 128. https://doi.org/10.3389/fimmu.2019.00128

Martínez-Lostao, L., Anel, A., & Pardo, J. (2015). How Do Cytotoxic Lymphocytes Kill Cancer Cells? Clinical Cancer Research, 21(22), 5047–5056. https://doi.org/10.1158/1078-0432.CCR-15-0685

Maude, S. L., Laetsch, T. W., Buechner, J., Rives, S., Boyer, M., Bittencourt, H., Bader, P., Verneris, M. R., Stefanski, H. E., Myers, G. D., Qayed, M., De Moerloose, B., Hiramatsu, H., Schlis, K., Davis, K. L., Martin, P. L., Nemecek, E. R., Yanik, G. A., Peters, C., … Grupp, S. A. (2018). Tisagenlecleucel in Children and Young Adults with B-Cell Lymphoblastic Leukemia. The New England Journal of Medicine, 378(5), 439–448. https://doi.org/10.1056/NEJMoa1709866

Murfin, K. (2021, April 6). 3 things to know about the tumor microenvironment. The University of Texas MD Anderson Cancer Center. Retrieved from https://www.mdanderson.org/cancerwise/what-is-the-tumor-microenvironment-3-things-to-know.h00-159460056.html#:~:text=The%20tumor%20microenvironment%20is%20the,other%2C%20either%20positively%20or%20negatively

National Cancer Institute. (n.d.). Bicistronic Chimeric Antigen Receptor (CAR) Constructs Targeting CD19 and CD20. Retrieved from https://techtransfer.cancer.gov/pdf/e-205-2018.pdf

National Cancer Institute. (2020, September 25). Cancer Statistics. U.S. Department of Health and Human Services, National Institutes of Health. Retrieved from https://www.cancer.gov/about-cancer/understanding/statistics

National Cancer Institute. (2021, May 5). What is Cancer?. U.S. Department of Health and Human Services, National Institutes of Health. Retrieved from

https://www.cancer.gov/about-cancer/understanding/what-is-cancer

Neelapu, S. S., Locke, F. L., Bartlett, N. L., Lekakis, L. J., Miklos, D. B., Jacobson, C. A., Braunschweig, I., Oluwole, O. O., Siddiqi, T., Lin, Y., Timmerman, J. M., Stiff, P. J., Friedberg, J. W., Flinn, I. W., Goy, A., Hill, B. T., Smith, M. R., Deol, A., Farooq, U., … Go, W. Y. (2017). Axicabtagene Ciloleucel CAR T-Cell Therapy in Refractory Large B-Cell Lymphoma. New England Journal of Medicine, 377(26), 2531–2544. https://doi.org/10.1056/NEJMoa1707447

Qu, J., Mei, Q., Chen, L., & Zhou, J. (2021). Chimeric antigen receptor (CAR)-T-cell therapy in non-small-cell lung cancer (NSCLC): Current status and future perspectives. Cancer Immunology, Immunotherapy, 70(3), 619–631. https://doi.org/10.1007/s00262-020-02735-0

Raskov, H., Orhan, A., Christensen, J. P., & Gögenur, I. (2021). Cytotoxic CD8+ T cells in cancer and cancer immunotherapy. British Journal of Cancer, 124(2), 359–367. https://doi.org/10.1038/s41416-020-01048-4

Reiner, S. L. (2007). Development in Motion: Helper T Cells at Work. Cell, 129(1), 33–36. https://doi.org/10.1016/j.cell.2007.03.019

Saleh, R., & Elkord, E. (2020). FoxP3+ T regulatory cells in cancer: Prognostic biomarkers and therapeutic targets. Cancer Letters, 490, 174–185. https://doi.org/10.1016/j.canlet.2020.07.022

Sterner, R. C., & Sterner, R. M. (2021). CAR-T cell therapy: Current limitations and potential strategies. Blood Cancer Journal, 11(4), 69. https://doi.org/10.1038/s41408-021-00459-7

Tanaka, A., & Sakaguchi, S. (2017). Regulatory T cells in cancer immunotherapy. Cell Research, 27(1), 109–118. https://doi.org/10.1038/cr.2016.151

Togashi, Y., & Nishikawa, H. (2017). Regulatory T Cells: Molecular and Cellular Basis for Immunoregulation. In A. Yoshimura (Ed.), Emerging Concepts Targeting Immune Checkpoints in Cancer and Autoimmunity (Vol. 410, pp. 3–27). Springer International Publishing. https://doi.org/10.1007/82_2017_58

Togashi, Y., Shitara, K., & Nishikawa, H. (2019). Regulatory T cells in cancer immunosuppression—Implications for anticancer therapy. Nature Reviews Clinical Oncology, 16(6), 356–371. https://doi.org/10.1038/s41571-019-0175-7

U.S. Food & Drug Administration. (2021, June 14). KYMRIAH (tisagenlecleucel). Retrieved from

https://www.fda.gov/vaccines-blood-biologics/cellular-gene-therapy-products/kymriah-tisagenlecleucel

U.S. Food & Drug Administration. (2021, October 14). FDA D.I.S.C.O. Burst Edition: FDA approval of Tecartus (brexucabtagene autolecucel) for adult patients with relapsed or refractory B-cell precursor acute lymphoblastic leukemia. Retrieved from https://www.fda.gov/drugs/resources-information-approved-drugs/fda-disco-burst-edition-fda-approval-tecartus-brexucabtagene-autoleucel-adult-patients-relapsed-or

U.S. Food & Drug Administration. (2022, April 14). YESCARTA (axicabtagene ciloleucel). Retrieved from https://www.fda.gov/vaccines-blood-biologics/cellular-gene-therapy-products/yescarta-axicabtagene-ciloleucel

Vinay, D. S., Ryan, E. P., Pawelec, G., Talib, W. H., Stagg, J., Elkord, E., Lichtor, T., Decker, W. K., Whelan, R. L., Kumara, H. M. C. S., Signori, E., Honoki, K., Georgakilas, A. G., Amin, A., Helferich, W. G., Boosani, C. S., Guha, G., Ciriolo, M. R., Chen, S., … Kwon, B. S. (2015). Immune evasion in cancer: Mechanistic basis and therapeutic strategies. Seminars in Cancer Biology, 35, S185–S198. https://doi.org/10.1016/j.semcancer.2015.03.004

Wang, R.-F. (2008). CD8+ regulatory T cells, their suppressive mechanisms, and regulation in cancer. Human Immunology, 69(11), 811–814. https://doi.org/10.1016/j.humimm.2008.08.276

Workman, C. J., Szymczak-Workman, A. L., Collison, L. W., Pillai, M. R., & Vignali, D. A. A. (2009). The development and function of regulatory T cells. Cellular and Molecular Life Sciences, 66(16), 2603–2622. https://doi.org/10.1007/s00018-009-0026-2

World Health Organization. (2022, February 3). Cancer. Retrieved from https://www.who.int/news-room/fact-sheets/detail/cancer

Zhang, C., Liu, J., Zhong, J. F., & Zhang, X. (2017). Engineering CAR-T cells. Biomarker Research, 5(1), 22. https://doi.org/10.1186/s40364-017-0102-y

Zhao, J., Song, Y., & Liu, D. (2019). Clinical trials of dual-target CAR T cells, donor-derived CAR T cells, and universal CAR T cells for acute lymphoid leukemia. Journal of Hematology & Oncology, 12(1), 17. https://doi.org/10.1186/s13045-019-0705-x

Published

08-31-2022

How to Cite

Rho, H., & Halasz, H. (2022). Interaction Between Immune and Cancer Cells and Promising CAR T-cell Therapy. Journal of Student Research, 11(3). https://doi.org/10.47611/jsrhs.v11i3.2866

Issue

Section

HS Review Articles