Stem cells in cardiac diseases
Using always-new material to fix the crucial organ
DOI:
https://doi.org/10.47611/jsrhs.v11i3.2838Keywords:
stem cells, heart disease, cardiac cells regenerationAbstract
Heart diseases is one of the most common diseases that people are facing currently, including coronary artery disease, arrhythmia, cardiomyopathy, and heart failure. Heart disease is responsible for most of the death globally, causing about 1 in 4 deaths, since heart is one of most important organs in organisms. There already have been several ways dealing with the heart diseases, such as medical treatment, operations, regulation in daily diet, coronary artery bypass graft, heart transplantation and so on. A entirely new approach, which is called stem cell therapy tßechnique was also developed and gradually introduced to the public. Stem cells are able to differentiate into the different type of cells needed for the treatment. Whenever the therapies take place or what ever the organs needed, stem cells can always fulfill the requirement. As an always-new material, stem cells have broad prospects since it can help figure out some diseases that have no treatment now as it provides a entirely new approach of thinking.
Downloads
References or Bibliography
Avasthi, S., Srivastava, R., Singh, A., & Srivastava, D. (2008). Stem Cell: Past, Present and Future- A Review Article. Internet Journal of Medical Update, 3. https://doi.org/10.4314/ijmu.v3i1.39856
Borchardt, T., & Braun, T. (2007). Cardiovascular regeneration in non-mammalian model systems: what are the differences between newts and man? Thromb Haemost, 98(2), 311-318.
Campos de Carvalho, A. C., Kasai-Brunswick, T. H., & Bastos Carvalho, A. (2021). Cell-Based Therapies for Heart Failure [Perspective]. Frontiers in Pharmacology, 12(383). https://doi.org/10.3389/fphar.2021.641116
Clarke, D. L., Johansson, C. B., Wilbertz, J., Veress, B., Nilsson, E., Karlström, H., Lendahl, U., & Frisén, J. (2000). Generalized potential of adult neural stem cells. Science, 288(5471), 1660-1663. https://doi.org/10.1126/science.288.5471.1660
Clausen, H., & Hakomori, S. (1989). ABH and related histo-blood group antigens; immunochemical differences in carrier isotypes and their distribution. Vox Sang, 56(1), 1-20. https://doi.org/10.1111/j.1423-0410.1989.tb03040.x
Clevers, H., Loh, K. M., & Nusse, R. (2014). Stem cell signaling. An integral program for tissue renewal and regeneration: Wnt signaling and stem cell control. Science, 346(6205), 1248012. https://doi.org/10.1126/science.1248012
Fraser, C. C., Szilvassy, S. J., Eaves, C. J., & Humphries, R. K. (1992). Proliferation of totipotent hematopoietic stem cells in vitro with retention of long-term competitive in vivo reconstituting ability. Proc Natl Acad Sci U S A, 89(5), 1968-1972. https://doi.org/10.1073/pnas.89.5.1968
Huang, J., Feng, Q., Wang, L., & Zhou, B. (2021). Human Pluripotent Stem Cell-Derived Cardiac Cells: Application in Disease Modeling, Cell Therapy, and Drug Discovery [Mini Review]. Frontiers in Cell and Developmental Biology, 9(735). https://doi.org/10.3389/fcell.2021.655161
Ito, N., & Hirota, T. (1992). Histochemical and cytochemical localization of blood group antigens. Prog Histochem Cytochem, 25(2), 1-85. https://doi.org/10.1016/s0079-6336(11)80056-2
Jung, J. H., Fu, X., & Yang, P. C. (2017). Exosomes Generated From iPSC-Derivatives: New Direction for Stem Cell Therapy in Human Heart Diseases. Circ Res, 120(2), 407-417. https://doi.org/10.1161/circresaha.116.309307
Kadota, S., Tanaka, Y., & Shiba, Y. (2020). Heart regeneration using pluripotent stem cells. J Cardiol, 76(5), 459-463. https://doi.org/10.1016/j.jjcc.2020.03.013
Kanji, S., & Das, H. (2017). Advances of Stem Cell Therapeutics in Cutaneous Wound Healing and Regeneration. Mediators Inflamm, 2017, 5217967. https://doi.org/10.1155/2017/5217967
Keller, G. M. (1995). In vitro differentiation of embryonic stem cells. Curr Opin Cell Biol, 7(6), 862-869. https://doi.org/10.1016/0955-0674(95)80071-9
Li, J. H., Zhang, N., & Wang, J. A. (2008). Improved anti-apoptotic and anti-remodeling potency of bone marrow mesenchymal stem cells by anoxic pre-conditioning in diabetic cardiomyopathy. J Endocrinol Invest, 31(2), 103-110. https://doi.org/10.1007/bf03345575
Li, R., Zhong, C., Yu, Y., Liu, H., Sakurai, M., Yu, L., Min, Z., Shi, L., Wei, Y., Takahashi, Y., Liao, H. K., Qiao, J., Deng, H., Nuñez-Delicado, E., Rodriguez Esteban, C., Wu, J., & Izpisua Belmonte, J. C. (2019). Generation of Blastocyst-like Structures from Mouse Embryonic and Adult Cell Cultures. Cell, 179(3), 687-702.e618. https://doi.org/10.1016/j.cell.2019.09.029
Lo, B., & Parham, L. (2009). Ethical issues in stem cell research. Endocr Rev, 30(3), 204-213. https://doi.org/10.1210/er.2008-0031
Makhani, K., ali, s., Yousuf, S., & Siddiqui, S. (2015). Therapeutic Potential of Totipotent, Pluripotent and Multipotent Stem Cells. MOJ Cell Science & Report, 2, 41. https://doi.org/10.15406/mojcsr.2015.02.00041
Martino, H., Brofman, P., Greco, O., Bueno, R., Bodanese, L., Clausell, N., Maldonado, J. A., Mill, J., Braile, D., Moraes, J., Jr, Silva, S., Bozza, A., Santos, B., Campos de Carvalho, A., & Investigators, f. t. D. C. A. o. t. M. S. (2015). Multicentre, randomized, double-blind trial of intracoronary autologous mononuclear bone marrow cell injection in non-ischaemic dilated cardiomyopathy (the dilated cardiomyopathy arm of the MiHeart study). European Heart Journal, 36(42), 2898-2904. https://doi.org/10.1093/eurheartj/ehv477
Meng, K., Cai, H., Cai, S., Hong, Y., & Zhang, X. (2021). Adiponectin Modified BMSCs Alleviate Heart Fibrosis via Inhibition TGF-beta1/Smad in Diabetic Rats [10.3389/fcell.2021.644160]. Frontiers in Cell and Developmental Biology, 9, 622. https://www.frontiersin.org/article/10.3389/fcell.2021.644160
Ong, C. S., Yesantharao, P., Huang, C. Y., Mattson, G., Boktor, J., Fukunishi, T., Zhang, H., & Hibino, N. (2018). 3D bioprinting using stem cells. Pediatr Res, 83(1-2), 223-231. https://doi.org/10.1038/pr.2017.252
Orlic, D., Kajstura, J., Chimenti, S., Jakoniuk, I., Anderson, S. M., Li, B., Pickel, J., McKay, R., Nadal-Ginard, B., Bodine, D. M., Leri, A., & Anversa, P. (2001). Bone marrow cells regenerate infarcted myocardium. Nature, 410(6829), 701-705. https://doi.org/10.1038/35070587
Povsic, T. J., & Gersh, B. J. (2021). Stem Cells in Cardiovascular Diseases: 30,000-Foot View. Cells, 10(3). https://doi.org/10.3390/cells10030600
Rikhtegar, R., Pezeshkian, M., Dolati, S., Safaie, N., Afrasiabi Rad, A., Mahdipour, M., Nouri, M., Jodati, A. R., & Yousefi, M. (2019). Stem cells as therapy for heart disease: iPSCs, ESCs, CSCs, and skeletal myoblasts. Biomed Pharmacother, 109, 304-313. https://doi.org/10.1016/j.biopha.2018.10.065
Rink, J. C. (2013). Stem cell systems and regeneration in planaria. Dev Genes Evol, 223(1-2), 67-84. https://doi.org/10.1007/s00427-012-0426-4
Saitou, M., & Yamaji, M. (2012). Primordial germ cells in mice. Cold Spring Harb Perspect Biol, 4(11). https://doi.org/10.1101/cshperspect.a008375
Sattler, S., & Rosenthal, N. (2016). The neonate versus adult mammalian immune system in cardiac repair and regeneration. Biochim Biophys Acta, 1863(7 Pt B), 1813-1821. https://doi.org/10.1016/j.bbamcr.2016.01.011
Sobhani, A., Khanlarkhani, N., Baazm, M., Mohammadzadeh, F., Najafi, A., Mehdinejadiani, S., & Sargolzaei Aval, F. (2017). Multipotent Stem Cell and Current Application. Acta Med Iran, 55(1), 6-23.
Tang, X. L., Rokosh, G., Sanganalmath, S. K., Yuan, F., Sato, H., Mu, J., Dai, S., Li, C., Chen, N., Peng, Y., Dawn, B., Hunt, G., Leri, A., Kajstura, J., Tiwari, S., Shirk, G., Anversa, P., & Bolli, R. (2010). Intracoronary administration of cardiac progenitor cells alleviates left ventricular dysfunction in rats with a 30-day-old infarction. Circulation, 121(2), 293-305. https://doi.org/10.1161/circulationaha.109.871905
Taylor, C. J., Bolton, E. M., & Bradley, J. A. (2011). Immunological considerations for embryonic and induced pluripotent stem cell banking. Philos Trans R Soc Lond B Biol Sci, 366(1575), 2312-2322. https://doi.org/10.1098/rstb.2011.0030
Tompkins, B. A., Balkan, W., Winkler, J., Gyöngyösi, M., Goliasch, G., Fernández-Avilés, F., & Hare, J. M. (2018). Preclinical Studies of Stem Cell Therapy for Heart Disease. Circulation Research, 122(7), 1006-1020. https://doi.org/10.1161/CIRCRESAHA.117.312486
Vujic, A., Natarajan, N., & Lee, R. T. (2020). Molecular mechanisms of heart regeneration. Semin Cell Dev Biol, 100, 20-28. https://doi.org/10.1016/j.semcdb.2019.09.003
Xia, J., Minamino, S., Kuwabara, K., & Arai, S. (2019). Stem cell secretome as a new booster for regenerative medicine. Biosci Trends, 13(4), 299-307. https://doi.org/10.5582/bst.2019.01226
Xu, R., Li, C., Liu, X., & Gao, S. (2021). Insights into epigenetic patterns in mammalian early embryos. Protein Cell, 12(1), 7-28. https://doi.org/10.1007/s13238-020-00757-z
Yamanaka, S. (2020). Pluripotent Stem Cell-Based Cell Therapy-Promise and Challenges. Cell Stem Cell, 27(4), 523-531. https://doi.org/10.1016/j.stem.2020.09.014
Zhang, Y., Mignone, J., & MacLellan, W. R. (2015). Cardiac Regeneration and Stem Cells. Physiol Rev, 95(4), 1189-1204. https://doi.org/10.1152/physrev.00021.2014
Published
How to Cite
Issue
Section
Copyright (c) 2022 Yadan Huang; Jinglin Yang
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Copyright holder(s) granted JSR a perpetual, non-exclusive license to distriute & display this article.