Types of Exercise in Relation to the Risk Reduction and Treatment of Alzheimer’s Disease
DOI:
https://doi.org/10.47611/jsrhs.v11i3.2832Keywords:
Alzheimer's Disease, Physical Exercise, Mental Exercise, Cognition, PreventionAbstract
Due to the increasing life expectancy of the world, Alzheimer’s Disease (AD), a neurodegenerative disease, became an increasing issue we face. Unfortunately, as there are no current viable results that came from pharmaceutical research, scientists began investigating other risk factors that could be altered to prevent AD. Physical and mental exercises were discovered as effective measures to prevent and even a potential intervention within the treatment of AD. Some examples of physical exercise include aerobic exercise and resistance training, whereas mental activity involves leisure activities and learning. The effects of the types of exercise were reviewed in the manuscript. The exercise in relation to aging are discussed. An in-depth discussion over the hippocampal volume. The types of physical activities were reviewed in terms of their effectiveness. We concluded that physical exercise, especially aerobic exercise is beneficial in terms of risk reduction and treatment of AD.
Downloads
References or Bibliography
Alzheimer’s Association. (2012). 2012 Alzheimer’s disease facts and figures. Alzheimers Dement. 8, 131–168. doi: 10.1016/j.jalz.2012.02.001
Ashe, K. H., and Zahs, K. R. (2010). Probing the biology of Alzheimer’s disease in mice. Neuron 66, 631–645. doi: 10.1016/j.neuron.2010.04.031
Mattson, M. P. (2004). Pathways towards and away from Alzheimer’s disease. Nature 430, 631–639. doi: 10.1038/nature02621
Kloppenborg, R. P., van den Berg, E., Kappelle, L. J., & Biessels, G. J. (2008). Diabetes and other vascular risk factors for dementia: Which factor matters most? A systematic review. European Journal of Pharmacology, 585(1), 97–108. https://doi.org/10.1016/j.ejphar.2008.02.049
Gauthier, S., Albert, M., Fox, N., Goedert, M., Kivipelto, M., Mestre‐Ferrandiz, J., & Middleton, L. T. (2015). Why has therapy development for dementia failed in the last two decades? Alzheimer’s & Dementia, 12(1), 60–64. https://doi.org/10.1016/j.jalz.2015.12.003
Jedrziewski, M. K., Ewbank, D. C., Wang, H., & Trojanowski, J. Q. (2014). The Impact of Exercise, Cognitive Activities, and Socialization on Cognitive Function. American Journal of Alzheimer’s Disease & Other Dementiasr, 29(4), 372–378. https://doi.org/10.1177/1533317513518646
Hamer, M., & Chida, Y. (2008). Physical activity and risk of neurodegenerative disease: a systematic review of prospective evidence. Psychological Medicine, 39(1), 3–11. https://doi.org/10.1017/s0033291708003681
Spirduso, W. W., & Clifford, P. (1978). Replication of Age and Physical Activity Effects on Reaction and Movement Time. Journal of Gerontology, 33(1), 26–30. https://doi.org/10.1093/geronj/33.1.26
Plassman, B. L. (2010). Systematic Review: Factors Associated With Risk for and Possible Prevention of Cognitive Decline in Later Life. Annals of Internal Medicine, 153(3), 182. https://doi.org/10.7326/0003-4819-153-3-201008030-00258
Barnes, D. E., & Yaffe, K. (2011). The projected effect of risk factor reduction on Alzheimer’s disease prevalence. The Lancet Neurology, 10(9), 819–828. https://doi.org/10.1016/s1474-4422(11)70072-2
Rolland, Y., Abellan van Kan, G., & Vellas, B. (2008). Physical Activity and Alzheimer’s Disease: From Prevention to Therapeutic Perspectives. Journal of the American Medical Directors Association, 9(6), 390–405. https://doi.org/10.1016/j.jamda.2008.02.007
Jia, R., Liang, J., Xu, Y., & Wang, Y. (2019). Effects of physical activity and exercise on the cognitive function of patients with Alzheimer disease: a meta-analysis. BMC Geriatrics, 19(1). https://doi.org/10.1186/s12877-019-1175-2
Yang, S.-Y., Shan, C.-L., Qing, H., Wang, W., Zhu, Y., Yin, M.-M., … Wu, T. (2015). The Effects of Aerobic Exercise on Cognitive Function of Alzheimer’s Disease Patients. CNS & Neurological Disorders - Drug Targets, 14(10), 1292–1297. https://doi.org/10.2174/1871527315666151111123319
Lu, Y., Dong, Y., Tucker, D., Wang, R., Ahmed, M. E., Brann, D., & Zhang, Q. (2017). Treadmill Exercise Exerts Neuroprotection and Regulates Microglial Polarization and Oxidative Stress in a Streptozotocin-Induced Rat Model of Sporadic Alzheimer’s Disease. Journal of Alzheimer’s Disease, 56(4), 1469–1484. https://doi.org/10.3233/jad-160869
Morris, J. K., Vidoni, E. D., Johnson, D. K., Van Sciver, A., Mahnken, J. D., Honea, R. A., … Burns, J. M. (2017). Aerobic exercise for Alzheimer’s disease: A randomized controlled pilot trial. PLOS ONE, 12(2), e0170547. https://doi.org/10.1371/journal.pone.0170547
Cooper, C., Moon, H. Y., & van Praag, H. (2017). On the Run for Hippocampal Plasticity. Cold Spring Harbor Perspectives in Medicine, 8(4), a029736. https://doi.org/10.1101/cshperspect.a029736
Fiatarone Singh, M. A., Gates, N., Saigal, N., Wilson, G. C., Meiklejohn, J., Brodaty, H., … Valenzuela, M. (2014). The Study of Mental and Resistance Training (SMART) Study—Resistance Training and/or Cognitive Training in Mild Cognitive Impairment: A Randomized, Double-Blind, Double-Sham Controlled Trial. Journal of the American Medical Directors Association, 15(12), 873–880. https://doi.org/10.1016/j.jamda.2014.09.010
CHO, J., SHIN, M.-K., KIM, D., LEE, I., KIM, S., & KANG, H. (2015). Treadmill Running Reverses Cognitive Declines due to Alzheimer Disease. Medicine & Science in Sports & Exercise, 47(9), 1814–1824. https://doi.org/10.1249/mss.0000000000000612
Crous-Bou, M., Minguillón, C., Gramunt, N., & Molinuevo, J. L. (2017). Alzheimer’s disease prevention: from risk factors to early intervention. Alzheimer’s Research & Therapy, 9(1). https://doi.org/10.1186/s13195-017-0297-z
Ott, A., van Rossum, C. T. M., van Harskamp, F., van de Mheen, H., Hofman, A., & Breteler, M. M. B. (1999). Education and the incidence of dementia in a large population-based study: The Rotterdam Study. Neurology, 52(3), 663–663. https://doi.org/10.1212/wnl.52.3.663
Scarmeas, N., Levy, G., Tang, M.-X. ., Manly, J., & Stern, Y. (2001). Influence of leisure activity on the incidence of Alzheimer’s Disease. Neurology, 57(12), 2236–2242. https://doi.org/10.1212/wnl.57.12.2236
Wilson, R. S., Bennett, D. A., Bienias, J. L., Aggarwal, N. T., Mendes de Leon, C. F., Morris, M. C., … Evans, D. A. (2002). Cognitive activity and incident AD in a population-based sample of older persons. Neurology, 59(12), 1910–1914. https://doi.org/10.1212/01.wnl.0000036905.59156.a1
RA;, Bj. (2012). Use it or lose it: engaged lifestyle as a buffer of cognitive decline in aging? Psychology and Aging, 14(2). https://doi.org/10.1037//0882-7974.14.2.245
Fratiglioni, L., Paillard-Borg, S., & Winblad, B. (2004). An active and socially integrated lifestyle in late life might protect against dementia. The Lancet Neurology, 3(6), 343–353. https://doi.org/10.1016/s1474-4422(04)00767-7
Verghese, J., Lipton, R. B., Katz, M. J., Hall, C. B., Derby, C. A., Kuslansky, G., … Buschke, H. (2003). Leisure Activities and the Risk of Dementia in the Elderly. New England Journal of Medicine, 348(25), 2508–2516. https://doi.org/10.1056/nejmoa022252
Firth, J., Stubbs, B., Vancampfort, D., Schuch, F., Lagopoulos, J., Rosenbaum, S., & Ward, P. B. (2018). Effect of aerobic exercise on hippocampal volume in humans: A systematic review and meta-analysis. NeuroImage, 166, 230–238. https://doi.org/10.1016/j.neuroimage.2017.11.007
Wrann, Christiane D., White, James P., Salogiannnis, J., Laznik-Bogoslavski, D., Wu, J., Ma, D., … Spiegelman, Bruce M. (2013). Exercise Induces Hippocampal BDNF through a PGC-1α/FNDC5 Pathway. Cell Metabolism, 18(5), 649–659. https://doi.org/10.1016/j.cmet.2013.09.008
ten Brinke, L. F., Bolandzadeh, N., Nagamatsu, L. S., Hsu, C. L., Davis, J. C., Miran-Khan, K., & Liu-Ambrose, T. (2014). Aerobic exercise increases hippocampal volume in older women with probable mild cognitive impairment: a 6-month randomised controlled trial. British Journal of Sports Medicine, 49(4), 248–254. https://doi.org/10.1136/bjsports-2013-093184
Erickson, K. I., Voss, M. W., Prakash, R. S., Basak, C., Szabo, A., Chaddock, L., … Kramer, A. F. (2011). Exercise training increases size of hippocampus and improves memory. Proceedings of the National Academy of Sciences, 108(7), 3017–3022. https://doi.org/10.1073/pnas.1015950108
Baker, L. D., Frank, L. L., Foster-Schubert, K., Green, P. S., Wilkinson, C. W., McTiernan, A., … Craft, S. (2010). Effects of Aerobic Exercise on Mild Cognitive Impairment. Archives of Neurology, 67(1). https://doi.org/10.1001/archneurol.2009.307
Broadhouse, K. M., Singh, M. F., Suo, C., Gates, N., Wen, W., Brodaty, H., … Sachdev, P. S. (2020). Hippocampal plasticity underpins long-term cognitive gains from resistance exercise in MCI. NeuroImage: Clinical, 25, 102182. https://doi.org/10.1016/j.nicl.2020.102182
van Praag, H., Christie, B. R., Sejnowski, T. J., & Gage, F. H. (1999). Running enhances neurogenesis, learning, and long-term potentiation in mice. Proceedings of the National Academy of Sciences, 96(23), 13427–13431. https://doi.org/10.1073/pnas.96.23.13427
Marlatt, M. W., Potter, M. C., Lucassen, P. J., & van Praag, H. (2012). Running throughout middle-age improves memory function, hippocampal neurogenesis, and BDNF levels in female C57BL/6J mice. Developmental Neurobiology, 72(6), 943–952. https://doi.org/10.1002/dneu.22009
Kee, N., Teixeira, C. M., Wang, A. H., & Frankland, P. W. (2007). Preferential incorporation of adult-generated granule cells into spatial memory networks in the dentate gyrus. Nature Neuroscience, 10(3), 355–362. https://doi.org/10.1038/nn1847
Nakamoto, H., Yoshitake, Y., Takai, Y., Kanehisa, H., Kitamura, T., Kawanishi, M., & Mori, S. (2011). Knee extensor strength is associated with Mini-Mental State Examination scores in elderly men. European Journal of Applied Physiology, 112(5), 1945–1953. https://doi.org/10.1007/s00421-011-2176-9
Steves, C. J., Mehta, M. M., Jackson, S. H. D., & Spector, T. D. (2015). Kicking Back Cognitive Ageing: Leg Power Predicts Cognitive Ageing after Ten Years in Older Female Twins. Gerontology, 62(2), 138–149. https://doi.org/10.1159/000441029
Verghese, J., Lipton, R. B., Katz, M. J., Hall, C. B., Derby, C. A., Kuslansky, G., … Buschke, H. (2003). Leisure Activities and the Risk of Dementia in the Elderly. New England Journal of Medicine, 348(25), 2508–2516. https://doi.org/10.1056/nejmoa022252
Gonneaud, J., Bedetti, C., Pichet Binette, A., Benzinger, T. L. S., Morris, J. C., Bateman, R. J., … Villeneuve, S. (2020). Association of education with Aβ burden in preclinical familial and sporadic Alzheimer disease. Neurology, 95(11), e1554–e1564. https://doi.org/10.1212/wnl.0000000000010314
Musiek, E. S., Xiong, D. D., & Holtzman, D. M. (2015). Sleep, circadian rhythms, and the pathogenesis of Alzheimer Disease. Experimental & Molecular Medicine, 47(3), e148–e148. https://doi.org/10.1038/emm.2014.121
Knopman, D. S., Amieva, H., Petersen, R. C., Chételat, G., Holtzman, D. M., Hyman, B. T., … Jones, D. T. (2021). Alzheimer disease. Nature Reviews Disease Primers, 7(1). https://doi.org/10.1038/s41572-021-00269-y
Erickson, K. I., Prakash, R. S., Voss, M. W., Chaddock, L., Heo, S., McLaren, M., … Kramer, A. F. (2010). Brain-Derived Neurotrophic Factor Is Associated with Age-Related Decline in Hippocampal Volume. Journal of Neuroscience, 30(15), 5368–5375. https://doi.org/10.1523/jneurosci.6251-09.2010
Herold, F., Törpel, A., Schega, L., & Müller, N. G. (2019). Functional and/or structural brain changes in response to resistance exercises and resistance training lead to cognitive improvements – a systematic review. European Review of Aging and Physical Activity, 16(1). https://doi.org/10.1186/s11556-019-0217-2
Tsukamoto, H., Suga, T., Takenaka, S., Tanaka, D., Takeuchi, T., Hamaoka, T., … Hashimoto, T. (2016). Repeated high-intensity interval exercise shortens the positive effect on executive function during post-exercise recovery in healthy young males. Physiology & Behavior, 160, 26–34. https://doi.org/10.1016/j.physbeh.2016.03.029
Published
How to Cite
Issue
Section
Copyright (c) 2022 Daniel Zhang; Daniel Ahn
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Copyright holder(s) granted JSR a perpetual, non-exclusive license to distriute & display this article.