A Stretchable and Tough Small-Scale Magnetic Actuator for Biomedical Applications
DOI:
https://doi.org/10.47611/jsrhs.v11i2.2793Keywords:
Drug Delivery, Multimodal locomotion, Magnetic locomotion, HydrogelAbstract
A stretchable, tough, small-scale magnetic actuator capable of multimodal locomotion under magnetic fields is proposed. The actuator consists of a silicone elastomer (Ecoflex 00-10) embedded with neodymium-iron-boron (NdFeB) particles and coated with a poly(2-methacryloyloxyethyl phosphorylcholine) (PMPC) triple network hydrogel layer. The hydrogel layer is biocompatible and decreases the surface friction of the actuator. Mechanically, the actuator is highly stretchable, tough, and fatigue-resistant. The application of the actuator in drug delivery is demonstrated.
Downloads
References or Bibliography
Ceylan H, Giltinan J, Kozielski K, Sitti M. Mobile microrobots for bioengineering applications. Lab on a Chip. 2017;17(10):1705-1724. doi:10.1039/c7lc00064b.
Sitti M, Ceylan H, Hu W, et al. Biomedical applications of Untethered Mobile Milli/Microrobots. Proceedings of the IEEE. 2015;103(2):205-224. doi:10.1109/jproc.2014.2385105.
Guan L, Yang Y, Jia F, Gao G. Highly transparent and stretchable hydrogels with rapidly responsive photochromic performance for UV-irradiated optical display devices. Reactive and Functional Polymers. 2019;138:88-95. doi:10.1016/j.reactfunctpolym.2019.03.003
Dong L, Agarwal AK, Beebe DJ, Jiang H. Adaptive liquid microlenses activated by stimuli-responsive hydrogels. Nature. 2006;442(7102):551-554. doi:10.1038/nature05024
Han D, Farino C, Yang C, et al. Soft Robotic Manipulation and Locomotion with a 3D Printed Electroactive Hydrogel. ACS Appl Mater Interfaces. 2018;10(21):17512-17518.
Hu W, Lum GZ, Mastrangeli M, Sitti M. Small-scale soft-bodied robot with multimodal locomotion. Nature. 2018;554(7690):81-85. doi:10.1038/nature25443
Milner PE, Parkes M, Puetzer JL, et al. A low friction, biphasic and boundary lubricating hydrogel for cartilage replacement. Acta Biomaterialia. 2018;65:102-111. doi:10.1016/j.actbio.2017.11.002
Kim Y, Yuk H, Zhao R, Chester SA, Zhao X. Printing ferromagnetic domains for untethered fast-transforming soft materials. Nature. 2018 Jun;558(7709):274-279. doi: 10.1038/s41586-018-0185-0. Epub 2018 Jun 13. PMID: 29899476.
Fusco, Stefano, et al. "Shape-switching microrobots for medical applications: The influence of shape in drug delivery and locomotion." ACS applied materials & interfaces 7.12 (2015): 6803-6811
Marechal L, Balland P, Lindenroth L, Petrou F, Kontovounisios C, Bello F. Toward a Common Framework and Database of Materials for Soft Robotics. Soft Robot. 2021 Jun;8(3):284-297. doi: 10.1089/soro.2019.0115. Epub 2020 Jun 24. PMID: 32589507.
Ahmad D, Sahu SK, Patra K. Fracture toughness, hysteresis and stretchability of dielectric elastomers under equibiaxial and biaxial loading. Polymer Testing. 2019;79:106038. doi:10.1016/j.polymertesting.2019.106038
Simha NK, Carlson CS, Lewis JL. Evaluation of fracture toughness of cartilage by micropenetration. Journal of Materials Science: Materials in Medicine. 2004;15(5):631-639. doi:10.1023/b:jmsm.0000026104.30607.c7
Simha NK, Carlson CS, Lewis JL. Evaluation of fracture toughness of cartilage by micropenetration. Journal of Materials Science: Materials in Medicine. 2004;15(5):631-639. doi:10.1023/b:jmsm.0000026104.30607.c7
Yuk, H., Zhang, T., Parada, G. A., Liu, X., & Zhao, X. (2016). Skin-inspired hydrogel–elastomer hybrids with robust interfaces and functional microstructures. Nature Communications, 7(1). https://doi.org/10.1038/ncomms12028
Published
How to Cite
Issue
Section
Copyright (c) 2022 Joseph Berbner; Ron Dennis
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Copyright holder(s) granted JSR a perpetual, non-exclusive license to distriute & display this article.