A Stretchable and Tough Small-Scale Magnetic Actuator for Biomedical Applications

Authors

  • Joseph Berbner Wellington College
  • Ron Dennis Welllington College

DOI:

https://doi.org/10.47611/jsrhs.v11i2.2793

Keywords:

Drug Delivery, Multimodal locomotion, Magnetic locomotion, Hydrogel

Abstract

A stretchable, tough, small-scale magnetic actuator capable of multimodal locomotion under magnetic fields is proposed. The actuator consists of a silicone elastomer (Ecoflex 00-10) embedded with neodymium-iron-boron (NdFeB) particles and coated with a poly(2-methacryloyloxyethyl phosphorylcholine) (PMPC) triple network hydrogel layer. The hydrogel layer is biocompatible and decreases the surface friction of the actuator. Mechanically, the actuator is highly stretchable, tough, and fatigue-resistant. The application of the actuator in drug delivery is demonstrated.

Downloads

Download data is not yet available.

Author Biography

Ron Dennis, Welllington College

Advisor

References or Bibliography

Ceylan H, Giltinan J, Kozielski K, Sitti M. Mobile microrobots for bioengineering applications. Lab on a Chip. 2017;17(10):1705-1724. doi:10.1039/c7lc00064b.

Sitti M, Ceylan H, Hu W, et al. Biomedical applications of Untethered Mobile Milli/Microrobots. Proceedings of the IEEE. 2015;103(2):205-224. doi:10.1109/jproc.2014.2385105.

Guan L, Yang Y, Jia F, Gao G. Highly transparent and stretchable hydrogels with rapidly responsive photochromic performance for UV-irradiated optical display devices. Reactive and Functional Polymers. 2019;138:88-95. doi:10.1016/j.reactfunctpolym.2019.03.003

Dong L, Agarwal AK, Beebe DJ, Jiang H. Adaptive liquid microlenses activated by stimuli-responsive hydrogels. Nature. 2006;442(7102):551-554. doi:10.1038/nature05024

Han D, Farino C, Yang C, et al. Soft Robotic Manipulation and Locomotion with a 3D Printed Electroactive Hydrogel. ACS Appl Mater Interfaces. 2018;10(21):17512-17518.

Hu W, Lum GZ, Mastrangeli M, Sitti M. Small-scale soft-bodied robot with multimodal locomotion. Nature. 2018;554(7690):81-85. doi:10.1038/nature25443

Milner PE, Parkes M, Puetzer JL, et al. A low friction, biphasic and boundary lubricating hydrogel for cartilage replacement. Acta Biomaterialia. 2018;65:102-111. doi:10.1016/j.actbio.2017.11.002

Kim Y, Yuk H, Zhao R, Chester SA, Zhao X. Printing ferromagnetic domains for untethered fast-transforming soft materials. Nature. 2018 Jun;558(7709):274-279. doi: 10.1038/s41586-018-0185-0. Epub 2018 Jun 13. PMID: 29899476.

Fusco, Stefano, et al. "Shape-switching microrobots for medical applications: The influence of shape in drug delivery and locomotion." ACS applied materials & interfaces 7.12 (2015): 6803-6811

Marechal L, Balland P, Lindenroth L, Petrou F, Kontovounisios C, Bello F. Toward a Common Framework and Database of Materials for Soft Robotics. Soft Robot. 2021 Jun;8(3):284-297. doi: 10.1089/soro.2019.0115. Epub 2020 Jun 24. PMID: 32589507.

Ahmad D, Sahu SK, Patra K. Fracture toughness, hysteresis and stretchability of dielectric elastomers under equibiaxial and biaxial loading. Polymer Testing. 2019;79:106038. doi:10.1016/j.polymertesting.2019.106038

Simha NK, Carlson CS, Lewis JL. Evaluation of fracture toughness of cartilage by micropenetration. Journal of Materials Science: Materials in Medicine. 2004;15(5):631-639. doi:10.1023/b:jmsm.0000026104.30607.c7

Simha NK, Carlson CS, Lewis JL. Evaluation of fracture toughness of cartilage by micropenetration. Journal of Materials Science: Materials in Medicine. 2004;15(5):631-639. doi:10.1023/b:jmsm.0000026104.30607.c7

Yuk, H., Zhang, T., Parada, G. A., Liu, X., & Zhao, X. (2016). Skin-inspired hydrogel–elastomer hybrids with robust interfaces and functional microstructures. Nature Communications, 7(1). https://doi.org/10.1038/ncomms12028

Published

05-31-2022

How to Cite

Berbner, J., & Dennis, R. . (2022). A Stretchable and Tough Small-Scale Magnetic Actuator for Biomedical Applications. Journal of Student Research, 11(2). https://doi.org/10.47611/jsrhs.v11i2.2793

Issue

Section

HS Research Projects