Telomeres and Telomerase in Cancer: Overview and Therapeutic Potential
DOI:
https://doi.org/10.47611/jsrhs.v11i3.2718Keywords:
telomeres, telomerase, hTERT, cancer, ALT, imetelstatAbstract
Telomeres are specialized structures of eukaryotic chromosomes that protect the tips of the chromosomes. Telomeres prevent chromosomes from losing base pair sequences at their ends, and also stop chromosomes from fusing together. Telomerase is an enzyme that rebuilds telomeres and maintains genomic stability by extending telomeres after each cell division. Telomerase activity prevents cellular aging, also known as senescence. Immortal cell lines can be created by inducing expression of telomerase in cells that normally lack telomerase. Cells need to maintain genomic integrity to prevent mutations that can lead to cancer. Such activation of telomerase mentioned above can often lead to cancer development by preserving genomic stability in rapidly dividing cells. If a cell keeps dividing and overcomes the limitations of telomeres, a cancerous tumor can form. In healthy cells, telomeres achieve the healthy balance between limiting cellular lifespan and keeping cancer growth at bay.
It has been established that telomerase activity is a biomarker of cancer and tumorigenesis. This makes telomerase an attractive target for cancer therapy, and studies indicate that methods of treatment such as oligonucleotides, immunotherapies, and stabilization of G-quadruplexes all hold immense possibilities in the field of oncology. Such discoveries provide insight on the potential of telomeres to play a significant role in the prevention of cancer before tumorigenesis, or the treatment of cancer after diagnosis. Therefore, telomerase is a viable cancer biomarker and a therapeutic target, and an area of interest in the field of cancer study.
Downloads
References or Bibliography
Altamura, G., degli Uberti, B., Galiero, G., De Luca, G., Power, K., Licenziato, L., Maiolino, P., & Borzacchiello, G. (2021). The Small Molecule BIBR1532 Exerts Potential Anti-cancer Activities in Preclinical Models of Feline Oral Squamous Cell Carcinoma Through Inhibition of Telomerase Activity and Down-Regulation of TERT. Frontiers in Veterinary Science, 7. https://www.frontiersin.org/article/10.3389/fvets.2020.620776
Aquilanti, E., Kageler, L., Wen, P. Y., & Meyerson, M. (2021). Telomerase as a therapeutic target in glioblastoma. Neuro-Oncology, 23(12), 2004–2013. https://doi.org/10.1093/neuonc/noab203
Barnes, R. P., Fouquerel, E., & Opresko, P. L. (2019). The impact of oxidative DNA damage and stress on telomere homeostasis. Mechanisms of Ageing and Development, 177, 37–45. https://doi.org/10.1016/j.mad.2018.03.013
Berardinelli, F., Sgura, A., Facoetti, A., Leone, S., Vischioni, B., Ciocca, M., & Antoccia, A. (2018). The G-quadruplex-stabilizing ligand RHPS4 enhances sensitivity of U251MG glioblastoma cells to clinical carbon ion beams. The FEBS Journal, 285(7), 1226–1236. https://doi.org/10.1111/febs.14415
Bernardes de Jesus, B., & Blasco, M. A. (2013). Telomerase at the intersection of cancer and aging. Trends in Genetics, 29(9), 513–520. https://doi.org/10.1016/j.tig.2013.06.007
Brown, T. A. (2002). Mutation, Repair and Recombination. In Genomes. 2nd edition. Wiley-Liss. https://www.ncbi.nlm.nih.gov/books/NBK21114/
Brunsvig, P. F., Guren, T. K., Nyakas, M., Steinfeldt-Reisse, C. H., Rasch, W., Kyte, J. A., Juul, H. V., Aamdal, S., Gaudernack, G., & Inderberg, E. M. (2020). Long-Term Outcomes of a Phase I Study With UV1, a Second Generation Telomerase Based Vaccine, in Patients With Advanced Non-Small Cell Lung Cancer. Frontiers in Immunology, 11, 572172. https://doi.org/10.3389/fimmu.2020.572172
Burchett, K. M., Yan, Y., & Ouellette, M. M. (2014). Telomerase Inhibitor Imetelstat (GRN163L) Limits the Lifespan of Human Pancreatic Cancer Cells. PLoS ONE, 9(1), e85155. https://doi.org/10.1371/journal.pone.0085155
Carvalho, J., Mergny, J.-L., Salgado, G. F., Queiroz, J. A., & Cruz, C. (2020). G-quadruplex, Friend or Foe: The Role of the G-quartet in Anticancer Strategies. Trends in Molecular Medicine, 26(9), 848–861. https://doi.org/10.1016/j.molmed.2020.05.002
Chakravarti, D., LaBella, K. A., & DePinho, R. A. (2021). Telomeres: History, health, and hallmarks of aging. Cell, 184(2), 306–322. https://doi.org/10.1016/j.cell.2020.12.028
Chatterjee, S. (2017). Telomeres in health and disease. Journal of Oral and Maxillofacial Pathology : JOMFP, 21(1), 87–91. https://doi.org/10.4103/jomfp.JOMFP_39_16
Chen, Y., Verbeek, Fons. J., & Wolstencroft, K. (2021). Establishing a consensus for the hallmarks of cancer based on gene ontology and pathway annotations. BMC Bioinformatics, 22, 178. https://doi.org/10.1186/s12859-021-04105-8
Chiba, K., Johnson, J. Z., Vogan, J. M., Wagner, T., Boyle, J. M., & Hockemeyer, D. (n.d.). Cancer-associated TERT promoter mutations abrogate telomerase silencing. ELife, 4, e07918. https://doi.org/10.7554/eLife.07918
Clynes, D., Jelinska, C., Xella, B., Ayyub, H., Scott, C., Mitson, M., Taylor, S., Higgs, D. R., & Gibbons, R. J. (2015). Suppression of the alternative lengthening of telomere pathway by the chromatin remodelling factor ATRX. Nature Communications, 6, 7538. https://doi.org/10.1038/ncomms8538
Cohen, S. B., Graham, M. E., Lovrecz, G. O., Bache, N., Robinson, P. J., & Reddel, R. R. (2007). Protein Composition of Catalytically Active Human Telomerase from Immortal Cells. Science, 315(5820), 1850–1853. https://doi.org/10.1126/science.1138596
Collins, K., & Mitchell, J. R. (2002). Telomerase in the human organism. Oncogene, 21(4), 564–579. https://doi.org/10.1038/sj.onc.1205083
Cusanelli, E., & Chartrand, P. (2015). Telomeric repeat-containing RNA TERRA: A noncoding RNA connecting telomere biology to genome integrity. Frontiers in Genetics, 6, 143. https://doi.org/10.3389/fgene.2015.00143
Danny MacKenzie, J. (2021). ALT Positivity in Human Cancers: Prevalence and Clinical Insights. Cancers, 13(10). https://doi.org/10.3390/cancers13102384
De Vitis, M., Berardinelli, F., & Sgura, A. (2018). Telomere Length Maintenance in Cancer: At the Crossroad between Telomerase and Alternative Lengthening of Telomeres (ALT). International Journal of Molecular Sciences, 19(2), E606. https://doi.org/10.3390/ijms19020606
Dilley, R. L., & Greenberg, R. A. (2015). ALTernative Telomere Maintenance and Cancer. Trends in Cancer, 1(2), 145–156. https://doi.org/10.1016/j.trecan.2015.07.007
Doksani, Y., Wu, J. Y., de Lange, T., & Zhuang, X. (2013). Super-resolution fluorescence imaging of telomeres reveals TRF2-dependent t-loop formation. Cell, 155(2), 345–356. https://doi.org/10.1016/j.cell.2013.09.048
Dratwa, M., Wysoczańska, B., Łacina, P., Kubik, T., & Bogunia-Kubik, K. (2020). TERT—Regulation and Roles in Cancer Formation. Frontiers in Immunology, 11, 589929. https://doi.org/10.3389/fimmu.2020.589929
Ernst, P., & Heidel, F. H. (2021). Molecular Mechanisms of Senescence and Implications for the Treatment of Myeloid Malignancies. Cancers, 13(4), 612. https://doi.org/10.3390/cancers13040612
Facts About Telomeres and Telomerase: Shay Lab—UT Southwestern. (n.d.). Retrieved November 30, 2021, from https://www.utsouthwestern.edu/labs/shay/research/facts-about-telomeres-telomerase.html
Fujiki, T., Udono, M., Kadooka, K., Yamashita, S., Miura, T., Shirahata, S., & Katakura, Y. (2010). Regulatory mechanisms of human and mouse telomerase reverse transcriptase gene transcription: Distinct dependency on c-Myc. Cytotechnology, 62(4), 333–339. https://doi.org/10.1007/s10616-010-9276-y
Giglia-Mari, G., Zotter, A., & Vermeulen, W. (2011). DNA Damage Response. Cold Spring Harbor Perspectives in Biology, 3(1), a000745. https://doi.org/10.1101/cshperspect.a000745
Gomez, D. E., Armando, R. G., Farina, H. G., Menna, P. L., Cerrudo, C. S., Ghiringhelli, P. D., & Alonso, D. F. (2012). Telomere structure and telomerase in health and disease (review). International Journal of Oncology, 41(5), 1561–1569. https://doi.org/10.3892/ijo.2012.1611
Guterres, A. N., & Villanueva, J. (2020). TARGETING TELOMERASE FOR CANCER THERAPY. Oncogene, 39(36), 5811–5824. https://doi.org/10.1038/s41388-020-01405-w
Hanif, F., Muzaffar, K., Perveen, K., Malhi, S. M., & Simjee, S. U. (2017). Glioblastoma Multiforme: A Review of its Epidemiology and Pathogenesis through Clinical Presentation and Treatment. Asian Pacific Journal of Cancer Prevention : APJCP, 18(1), 3–9. https://doi.org/10.22034/APJCP.2017.18.1.3
Harley, C. B., Futcher, A. B., & Greider, C. W. (1990). Telomeres shorten during ageing of human fibroblasts. Nature, 345(6274), 458–460. https://doi.org/10.1038/345458a0
Hemann, M. T., Strong, M. A., Hao, L. Y., & Greider, C. W. (2001). The shortest telomere, not average telomere length, is critical for cell viability and chromosome stability. Cell, 107(1), 67–77. https://doi.org/10.1016/s0092-8674(01)00504-9
Hemminki, O., dos Santos, J. M., & Hemminki, A. (2020). Oncolytic viruses for cancer immunotherapy. Journal of Hematology & Oncology, 13, 84. https://doi.org/10.1186/s13045-020-00922-1
Hiyama, E., & Hiyama, K. (2003). Telomerase as tumor marker. Cancer Letters, 194(2), 221–233. https://doi.org/10.1016/S0304-3835(02)00709-7
Hong, J., & Yun, C.-O. (2019). Telomere Gene Therapy: Polarizing Therapeutic Goals for Treatment of Various Diseases. Cells, 8(5), 392. https://doi.org/10.3390/cells8050392
Hornsby, P. J. (2007). Telomerase and the aging process. Experimental Gerontology, 42(7), 575–581. https://doi.org/10.1016/j.exger.2007.03.007
Hosoya, N., & Miyagawa, K. (2014). Targeting DNA damage response in cancer therapy. Cancer Science, 105(4), 370–388. https://doi.org/10.1111/cas.12366
Hurria, A., Jones, L., & Muss, H. B. (2016). Cancer Treatment as an Accelerated Aging Process: Assessment, Biomarkers, and Interventions. American Society of Clinical Oncology Educational Book, 36, e516–e522. https://doi.org/10.1200/EDBK_156160
Jackson, S. P., & Bartek, J. (2009). The DNA-damage response in human biology and disease. Nature, 461(7267), 1071–1078. https://doi.org/10.1038/nature08467
Jafri, M. A., Ansari, S. A., Alqahtani, M. H., & Shay, J. W. (2016). Roles of telomeres and telomerase in cancer, and advances in telomerase-targeted therapies. Genome Medicine, 8, 69. https://doi.org/10.1186/s13073-016-0324-x
Jaskelioff, M., Muller, F. L., Paik, J.-H., Thomas, E., Jiang, S., Adams, A., Sahin, E., Kost-Alimova, M., Protopopov, A., Cadiñanos, J., Horner, J. W., Maratos-Flier, E., & DePinho, R. A. (2011). Telomerase reactivation reverses tissue degeneration in aged telomerase deficient mice. Nature, 469(7328), 102–106. https://doi.org/10.1038/nature09603
Jeswani, G., & Paul, S. D. (2017). Chapter 15—Recent Advances in the Delivery of Chemotherapeutic Agents. In A. M. Grumezescu (Ed.), Nano- and Microscale Drug Delivery Systems (pp. 281–298). Elsevier. https://doi.org/10.1016/B978-0-323-52727-9.00015-7
Kamps, R., Brandão, R. D., van den Bosch, B. J., Paulussen, A. D. C., Xanthoulea, S., Blok, M. J., & Romano, A. (2017). Next-Generation Sequencing in Oncology: Genetic Diagnosis, Risk Prediction and Cancer Classification. International Journal of Molecular Sciences, 18(2), 308. https://doi.org/10.3390/ijms18020308
Kaufmann, W. K., & Paules, R. S. (1996). DNA damage and cell cycle checkpoints. The FASEB Journal, 10(2), 238–247. https://doi.org/10.1096/fasebj.10.2.8641557
Killela, P. J., Reitman, Z. J., Jiao, Y., Bettegowda, C., Agrawal, N., Diaz, L. A., Friedman, A. H., Friedman, H., Gallia, G. L., Giovanella, B. C., Grollman, A. P., He, T.-C., He, Y., Hruban, R. H., Jallo, G. I., Mandahl, N., Meeker, A. K., Mertens, F., Netto, G. J., … Yan, H. (2013). TERT promoter mutations occur frequently in gliomas and a subset of tumors derived from cells with low rates of self-renewal. Proceedings of the National Academy of Sciences of the United States of America, 110(15), 6021–6026. https://doi.org/10.1073/pnas.1303607110
Kosiol, N., Juranek, S., Brossart, P., Heine, A., & Paeschke, K. (2021). G-quadruplexes: A promising target for cancer therapy. Molecular Cancer, 20(1), 40. https://doi.org/10.1186/s12943-021-01328-4
Kumari, R., & Jat, P. (2021). Mechanisms of Cellular Senescence: Cell Cycle Arrest and Senescence Associated Secretory Phenotype. Frontiers in Cell and Developmental Biology, 9, 485. https://doi.org/10.3389/fcell.2021.645593
Kyo, S., Takakura, M., Fujiwara, T., & Inoue, M. (2008). Understanding and exploiting hTERT promoter regulation for diagnosis and treatment of human cancers. Cancer Science, 99(8), 1528–1538. https://doi.org/10.1111/j.1349-7006.2008.00878.x
Lai, T.-P., Zhang, N., Noh, J., Mender, I., Tedone, E., Huang, E., Wright, W. E., Danuser, G., & Shay, J. W. (2017). A method for measuring the distribution of the shortest telomeres in cells and tissues. Nature Communications, 8, 1356. https://doi.org/10.1038/s41467-017-01291-z
Lavanya, C., Venkataswamy, M. M., Sibin, M. K., Srinivas Bharath, M. M., & Chetan, G. K. (2018). Down regulation of human telomerase reverse transcriptase (hTERT) expression by BIBR1532 in human glioblastoma LN18 cells. Cytotechnology, 70(4), 1143–1154. https://doi.org/10.1007/s10616-018-0205-9
Lavanya, V., MohamedAdilA, A., Ahmed, N., Rishi, A., & Jamal, S. (2014). Small molecule inhibitors as emerging cancer therapeutics. https://www.semanticscholar.org/paper/Small-molecule-inhibitors-as-emerging-cancer-Lavanya-MohamedAdilA./6a8f793cd564f7a9e50eed9f93052709bad838cb
Lawlor, R. T., Veronese, N., Pea, A., Nottegar, A., Smith, L., Pilati, C., Demurtas, J., Fassan, M., Cheng, L., & Luchini, C. (2019). Alternative lengthening of telomeres (ALT) influences survival in soft tissue sarcomas: A systematic review with meta-analysis. BMC Cancer, 19, 232. https://doi.org/10.1186/s12885-019-5424-8
Leão, R., Apolónio, J. D., Lee, D., Figueiredo, A., Tabori, U., & Castelo-Branco, P. (2018). Mechanisms of human telomerase reverse transcriptase (hTERT) regulation: Clinical impacts in cancer. Journal of Biomedical Science, 25(1), 22. https://doi.org/10.1186/s12929-018-0422-8
Lee, Y., Koh, J., Kim, S.-I., Won, J. K., Park, C.-K., Choi, S. H., & Park, S.-H. (2017). The frequency and prognostic effect of TERT promoter mutation in diffuse gliomas. Acta Neuropathologica Communications, 5, 62. https://doi.org/10.1186/s40478-017-0465-1
Liu, J., Wang, L., Wang, Z., & Liu, J.-P. (2019). Roles of Telomere Biology in Cell Senescence, Replicative and Chronological Ageing. Cells, 8(1), 54. https://doi.org/10.3390/cells8010054
Liu, S. J., Nowakowski, T. J., Pollen, A. A., Lui, J. H., Horlbeck, M. A., Attenello, F. J., He, D., Weissman, J. S., Kriegstein, A. R., Diaz, A. A., & Lim, D. A. (2016). Single-cell analysis of long non-coding RNAs in the developing human neocortex. Genome Biology, 17(1), 67. https://doi.org/10.1186/s13059-016-0932-1
Liu, W., Zhong, Y.-F., Liu, L.-Y., Shen, C.-T., Zeng, W., Wang, F., Yang, D., & Mao, Z.-W. (2018). Solution structures of multiple G-quadruplex complexes induced by a platinum(II)-based tripod reveal dynamic binding. Nature Communications, 9(1), 3496. https://doi.org/10.1038/s41467-018-05810-4
Longhese, M. P. (2008). DNA damage response at functional and dysfunctional telomeres. Genes & Development, 22(2), 125–140. https://doi.org/10.1101/gad.1626908
McNally, E. J., Luncsford, P. J., & Armanios, M. (2019). Long telomeres and cancer risk: The price of cellular immortality. The Journal of Clinical Investigation, 129(9), 3474–3481. https://doi.org/10.1172/JCI120851
Mizukoshi, E., & Kaneko, S. (2019). Telomerase-Targeted Cancer Immunotherapy. International Journal of Molecular Sciences, 20(8), 1823. https://doi.org/10.3390/ijms20081823
Morgan, M. A., & Lawrence, T. S. (2015). Molecular Pathways: Overcoming Radiation Resistance by Targeting DNA Damage Response Pathways. Clinical Cancer Research : An Official Journal of the American Association for Cancer Research, 21(13), 2898–2904. https://doi.org/10.1158/1078-0432.CCR-13-3229
Nattress, C. B., & Halldén, G. (2018). Advances in oncolytic adenovirus therapy for pancreatic cancer. Cancer Letters, 434, 56–69. https://doi.org/10.1016/j.canlet.2018.07.006
Nosek, J. (2008). Origin and Evolution of Telomeres. CRC Press.
Okamoto, K., & Seimiya, H. (2019). Revisiting Telomere Shortening in Cancer. Cells, 8(2), 107. https://doi.org/10.3390/cells8020107
Palm, W. & Titia de Lange. (2008). How Shelterin Protects Mammalian Telomeres. Annual Review of Genetics, 42(1), 301–334. https://doi.org/10.1146/annurev.genet.41.110306.130350
Pascolo, E., Wenz, C., Lingner, J., Hauel, N., Priepke, H., Kauffmann, I., Garin-Chesa, P., Rettig, W. J., Damm, K., & Schnapp, A. (2002). Mechanism of human telomerase inhibition by BIBR1532, a synthetic, non-nucleosidic drug candidate. The Journal of Biological Chemistry, 277(18), 15566–15572. https://doi.org/10.1074/jbc.M201266200
Peifer, M., Hertwig, F., Roels, F., Dreidax, D., Gartlgruber, M., Menon, R., Krämer, A., Roncaioli, J. L., Sand, F., Heuckmann, J. M., Ikram, F., Schmidt, R., Ackermann, S., Engesser, A., Kahlert, Y., Vogel, W., Altmüller, J., Nürnberg, P., Thierry-Mieg, J., … Fischer, M. (2015). Telomerase activation by genomic rearrangements in high-risk neuroblastoma. Nature, 526(7575), 700–704. https://doi.org/10.1038/nature14980
Popli, D. B., Sircar, K., & Chowdhry, A. (2017). Telomerase: An exploration toward the end of cancer. Indian Journal of Dental Research, 28(5), 574. https://doi.org/10.4103/ijdr.IJDR_690_16
Prowse, K. R., & Greider, C. W. (1995). Developmental and tissue-specific regulation of mouse telomerase and telomere length. Proceedings of the National Academy of Sciences, 92(11), 4818–4822. https://doi.org/10.1073/pnas.92.11.4818
Roake, C. M., & Artandi, S. E. (2020). Regulation of human telomerase in homeostasis and disease. Nature Reviews. Molecular Cell Biology, 21(7), 384–397. https://doi.org/10.1038/s41580-020-0234-z
Röth, A., Harley, C., & Baerlocher, G. (2010). Imetelstat (GRN163L)—Telomerase-Based Cancer Therapy. Recent Results in Cancer Research. Fortschritte Der Krebsforschung. Progrès Dans Les Recherches Sur Le Cancer, 184, 221–234. https://doi.org/10.1007/978-3-642-01222-8_16
Rozman, J.-Z., Perme, M. P., Jez, M., Malicev, E., Krasna, M., Novakovic, S., Vrtovec, B., & Rozman, P. (2017). The effect of CD34+ cell telomere length and hTERT expression on the outcome of autologous CD34+ cell transplantation in patients with chronic heart failure. Mechanisms of Ageing and Development, 166, 42–47. https://doi.org/10.1016/j.mad.2017.06.001
Salvati, E., Rizzo, A., Iachettini, S., Zizza, P., Cingolani, C., D’Angelo, C., Porru, M., Mondello, C., Aiello, A., Farsetti, A., Gilson, E., Leonetti, C., & Biroccio, A. (2015). A basal level of DNA damage and telomere deprotection increases the sensitivity of cancer cells to G-quadruplex interactive compounds. Nucleic Acids Research, 43(3), 1759–1769. https://doi.org/10.1093/nar/gkv006
Schaich, M. A., Sanford, S. L., Welfer, G. A., Johnson, S. A., Khoang, T. H., Opresko, P. L., & Freudenthal, B. D. (n.d.). Mechanisms of nucleotide selection by telomerase. ELife, 9, e55438. https://doi.org/10.7554/eLife.55438
Schmutz, I., & de Lange, T. (2016). Shelterin. Current Biology, 26(10), R397–R399. https://doi.org/10.1016/j.cub.2016.01.056
Senga, S. S., & Grose, R. P. (2021). Hallmarks of cancer—The new testament. Open Biology, 11(1), 200358. https://doi.org/10.1098/rsob.200358
Shanmugaraj, B., Priya, L. B., Mahalakshmi, B., Subbiah, S., Hu, R.-M., Velmurugan, B. K., & Baskaran, R. (2020). Bacterial and viral vectors as vaccine delivery vehicles for breast cancer therapy. Life Sciences, 250, 117550. https://doi.org/10.1016/j.lfs.2020.117550
Shay, J. W., & Wright, W. E. (2019). Telomeres and telomerase: Three decades of progress. Nature Reviews Genetics, 20(5), 299–309. https://doi.org/10.1038/s41576-019-0099-1
Soler, D., Genescà, A., Arnedo, G., Egozcue, J., & Tusell, L. (2005). Telomere dysfunction drives chromosomal instability in human mammary epithelial cells. Genes, Chromosomes and Cancer, 44(4), 339–350. https://doi.org/10.1002/gcc.20244
Solomon, E., Berg, L., & W. Martin, D. (n.d.). Biology, 8th Edition, International Student Edition. Wadsworth Publishing.
Sommer, A., & Royle, N. J. (2020). ALT: A Multi-Faceted Phenomenon. Genes, 11(2), E133. https://doi.org/10.3390/genes11020133
Tan, J., & Lan, L. (2020). The DNA secondary structures at telomeres and genome instability. Cell & Bioscience, 10(1), 47. https://doi.org/10.1186/s13578-020-00409-z
Tauchi, T., Shin-ya, K., Sashida, G., Sumi, M., Okabe, S., Ohyashiki, J. H., & Ohyashiki, K. (2006). Telomerase inhibition with a novel G-quadruplex-interactive agent, telomestatin: In vitro and in vivo studies in acute leukemia. Oncogene, 25(42), 5719–5725. https://doi.org/10.1038/sj.onc.1209577
Trybek, T., Kowalik, A., Góźdź, S., & Kowalska, A. (2020). Telomeres and telomerase in oncogenesis (Review). Oncology Letters, 20(2), 1015–1027. https://doi.org/10.3892/ol.2020.11659
Valentijn, L. J., Koster, J., Zwijnenburg, D. A., Hasselt, N. E., van Sluis, P., Volckmann, R., van Noesel, M. M., George, R. E., Tytgat, G. A. M., Molenaar, J. J., & Versteeg, R. (2015). TERT rearrangements are frequent in neuroblastoma and identify aggressive tumors. Nature Genetics, 47(12), 1411–1414. https://doi.org/10.1038/ng.3438
Varley, H., Pickett, H. A., Foxon, J. L., Reddel, R. R., & Royle, N. J. (2002). Molecular characterization of inter-telomere and intra-telomere mutations in human ALT cells. Nature Genetics, 30(3), 301–305. https://doi.org/10.1038/ng834
Varmus, H. (2009). How Proto-oncogenes Participate in Cancer. In The Art and Politics of Science. W.W. Norton & Company. https://www.ncbi.nlm.nih.gov/books/NBK190612/
Vonderheide, R. H. (2002). Telomerase as a universal tumor-associated antigen for cancer immunotherapy. Oncogene, 21(4), 674–679. https://doi.org/10.1038/sj.onc.1205074
Vonderheide, R. H. (2008). Prospects and challenges of building a cancer vaccine targeting telomerase. Biochimie, 90(1), 173–180. https://doi.org/10.1016/j.biochi.2007.07.005
Vuong, H. G., Nguyen, T. Q., Ngo, T. N. M., Nguyen, H. C., Fung, K.-M., & Dunn, I. F. (2020). The interaction between TERT promoter mutation and MGMT promoter methylation on overall survival of glioma patients: A meta-analysis. BMC Cancer, 20(1), 897. https://doi.org/10.1186/s12885-020-07364-5
Wang, X., Hu, C. S., Petersen, B., Qiu, J., Ye, F., Houldsworth, J., Eng, K., Huang, F., & Hoffman, R. (2018). Imetelstat, a telomerase inhibitor, is capable of depleting myelofibrosis stem and progenitor cells. Blood Advances, 2(18), 2378–2388. https://doi.org/10.1182/bloodadvances.2018022012
Wang, Z., Yi, J., Li, H., Deng, L. F., & Tang, X. M. (2000). [Extension of life-span of normal human fibroblasts by reconstitution of telomerase activity]. Shi Yan Sheng Wu Xue Bao, 33(2), 129–140.
Weise, J. m., & GüneŞ, Ç. (2009). Differential regulation of human and mouse telomerase reverse transcriptase (TERT) promoter activity during testis development. Molecular Reproduction and Development, 76(3), 309–317. https://doi.org/10.1002/mrd.20954
What is a telomere? (n.d.). Yourgenome. Retrieved November 30, 2021, from https://www.yourgenome.org/facts/what-is-a-telomere
Wu, R. A., Tam, J., & Collins, K. (2017). DNA-binding determinants and cellular thresholds for human telomerase repeat addition processivity. The EMBO Journal, 36(13), 1908–1927. https://doi.org/10.15252/embj.201796887
Yost, K. E., Clatterbuck Soper, S. F., Walker, R. L., Pineda, M. A., Zhu, Y. J., Ester, C. D., Showman, S., Roschke, A. V., Waterfall, J. J., & Meltzer, P. S. (2019). Rapid and reversible suppression of ALT by DAXX in osteosarcoma cells. Scientific Reports, 9, 4544. https://doi.org/10.1038/s41598-019-41058-8
Yuan, X., Larsson, C., & Xu, D. (2019). Mechanisms underlying the activation of TERT transcription and telomerase activity in human cancer: Old actors and new players. Oncogene, 38(34), 6172–6183. https://doi.org/10.1038/s41388-019-0872-9
Zhang, A., Zheng, C., Lindvall, C., Hou, M., Ekedahl, J., Lewensohn, R., Yan, Z., Yang, X., Henriksson, M., Blennow, E., Nordenskjöld, M., Zetterberg, A., Björkholm, M., Gruber, A., & Xu, D. (2000). Frequent Amplification of the Telomerase Reverse Transcriptase Gene in Human Tumors. Cancer Research, 60(22), 6230–6235.
Zhu, X.-D., Niedernhofer, L., Kuster, B., Mann, M., Hoeijmakers, J. H. J., & de Lange, T. (2003). ERCC1/XPF removes the 3’ overhang from uncapped telomeres and represses formation of telomeric DNA-containing double minute chromosomes. Molecular Cell, 12(6), 1489–1498. https://doi.org/10.1016/s1097-2765(03)00478-7
Published
How to Cite
Issue
Section
Copyright (c) 2022 Taei Kim; Amy Tarangelo
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Copyright holder(s) granted JSR a perpetual, non-exclusive license to distriute & display this article.