Artificial Intelligence and Malignant Melanoma : A Review
DOI:
https://doi.org/10.47611/jsrhs.v11i3.2675Keywords:
Artificial Intelligence (AI), Malignant Melanoma, Cancer Detection, Computer-Aided Diagnosis (CAD)Abstract
Malignant Melanoma is the most deadly form of skin cancer and one of the most quickly expanding cancers in the world. Some of melanocytic nevi have a higher risk of developing malignant melanoma. Early diagnosis of melanoma is critical due to increasing survival rates, decreasing surgical removal and following disfigurement, and reducing the overall care costs. Although the golden standard is histopathologic examination of the excised suspicious lesion, there are a number of tools which allow a more detailed examination of the skin lesion. Artificial intelligence (AI) with its subfields (deep learning and machine learning) and imaging technologies have been incorporated in science and medicine. In dermatology, the rising incidence of melanoma, the benefits of early diagnosis, and the limited access to dermatologic services in some countries, have conduced developing of image-based, automated diagnostic systems and the usage of either clinical or dermoscopic images. This article tries to overlook the studies in this field and give a general view of it.
Downloads
References or Bibliography
Sivaraj S, Malmathanraj R, Palanisamy P. Detecting anomalous growth of skin lesion using threshold-based segmentation algorithm and Fuzzy K-Nearest Neighbor classifier. J Cancer Res Ther. 2020 Jan-Mar;16(1):40-52. http://doi.org/10.4103/jcrt. JCRT_306_17. PMID: 32362608.
Jaworek-Korjakowska J, Kłeczek P. Automatic Classification of Specific Melanocytic Lesions Using Artificial Intelligence. Biomed Res Int. 2016;2016:8934242. http://doi.org/10.1155/2016/8934242
Dildar M, Akram S, Irfan M, et al. Skin Cancer Detection: A Review Using Deep Learning Techniques. Int J Environ Res Public Health. 2021;18(10):5479. Published 2021 May 20. http://doi.org/10.3390/ijerph18105479
Lee KJ, Janda M, Stark MS, Sturm RA, Soyer HP. On Naevi and Melanomas: Two Sides of the Same Coin?. Front Med (Lausanne). 2021;8:635316. Published 2021 Feb 19. http://doi.org/10.3389/fmed.2021.635316
Phillips M, Marsden H, Jaffe W, Matin RN, Wali GN, Greenhalgh J, McGrath E, James R, Ladoyanni E, Bewley A, Argenziano G, Palamaras I. Assessment of Accuracy of an Artificial Intelligence Algorithm to Detect Melanoma in Images of Skin Lesions. JAMA Netw Open. 2019 Oct 2;2(10):e1913436. http://doi.org/10.1001/jamanetworkopen. 2019.13436. Erratum in: JAMA Netw Open. 2019 Nov 1;2(11):e1916430. PMID: 31617929; PMCID: PMC6806667.
Pham TC, Luong CM, Hoang VD, Doucet A. AI outperformed every dermatologist in dermoscopic melanoma diagnosis, using an optimized deep-CNN architecture with custom mini-batch logic and loss function. Sci Rep. 2021;11(1):17485. Published 2021 Sep 1. http://doi.org/10.1038/s41598-021-96707-8
García Arroyo JL, García Zapirain B. Detection of pigment network in dermoscopy images using supervised machine learning and structural analysis. Comput Biol Med. 2014 Jan;44:144-57. http://doi.org/10.1016/j.compbiomed. 2013.11.002. Epub 2013 Nov 12. PMID: 24314859.
Ferrante di Ruffano L, Takwoingi Y, Dinnes J, et al. Computer-assisted diagnosis techniques (dermoscopy and spectroscopy-based) for diagnosing skin cancer in adults. Cochrane Database Syst Rev. 2018;12(12):CD013186. Published 2018 Dec 4. http://doi.org/10.1002/14651858.CD013186
Gniadecka M, Philipsen PA, Sigurdsson S, Wessel S, Nielsen OF, Christensen DH, Hercogova J, Rossen K, Thomsen HK, Gniadecki R, Hansen LK, Wulf HC. Melanoma diagnosis by Raman spectroscopy and neural networks: structure alterations in proteins and lipids in intact cancer tissue. J Invest Dermatol. 2004 Feb;122(2):443-9. http://doi.org/10.1046/j.0022-202X. 2004.22208.x. PMID: 15009728.
Hosking AM, Coakley BJ, Chang D, et al. Hyperspectral imaging in automated digital dermoscopy screening for melanoma. Lasers Surg Med. 2019;51(3):214-222. doi:10.1002/lsm.23055
Stoecker WV, Gupta K, Stanley RJ, Moss RH, Shrestha B. Detection of asymmetric blotches (asymmetric structureless areas) in dermoscopy images of malignant melanoma using relative color. Skin Res Technol. 2005;11(3):179-184. http://doi.org/10.1111/j.1600-0846.2005.00117.x
Kim CI, Hwang SM, Park EB, Won CH, Lee JH. Computer-Aided Diagnosis Algorithm for Classification of Malignant Melanoma Using Deep Neural Networks. Sensors (Basel). 2021;21(16):5551. Published 2021 Aug 18. http://doi.org/10.3390/s21165551
Öztürk Ş, Özkaya U. Skin Lesion Segmentation with Improved Convolutional Neural Network. J Digit Imaging. 2020;33(4):958-970. http://doi.org/10.1007/s10278-020-00343-z
Gareau D, Hennessy R, Wan E, Pellacani G, Jacques SL. Automated detection of malignant features in confocal microscopy on superficial spreading melanoma versus nevi. J Biomed Opt. 2010;15(6):061713. http://doi.org/10.1117/1.3524301
Kurugol S, Dy JG, Brooks DH, Rajadhyaksha M. Pilot study of semiautomated localization of the dermal/epidermal junction in reflectance confocal microscopy images of skin. J Biomed Opt. 2011;16(3):036005. http://doi.org/10.1117/1.3549740
Petrie T, Samatham R, Witkowski AM, Esteva A, Leachman SA. Melanoma Early Detection: Big Data, Bigger Picture. J Invest Dermatol. 2019;139(1):25-30. http://doi.org/10.1016/j.jid.2018.06.187
Giavina-Bianchi M, de Sousa RM, Paciello VZA, et al. Implementation of artificial intelligence algorithms for melanoma screening in a primary care setting. PLoS One. 2021;16(9):e0257006. Published 2021 Sep 22. http://doi.org/10.1371/journal.pone.0257006
Shields CL, Lally SE, Dalvin LA, et al. White Paper on Ophthalmic Imaging for Choroidal Nevus Identification and Transformation into Melanoma. Transl Vis Sci Technol. 2021;10(2):24. http://doi.org/10.1167/tvst.10.2.24
Dick V, Sinz C, Mittlböck M, Kittler H, Tschandl P. Accuracy of Computer-Aided Diagnosis of Melanoma: A Meta-analysis. JAMA Dermatol. 2019;155(11):1291-1299. http://doi.org/10.1001/jamadermatol.2019.1375
Jutzi TB, Krieghoff-Henning EI, Holland-Letz T, et al. Artificial Intelligence in Skin Cancer Diagnostics: The Patients' Perspective. Front Med (Lausanne). 2020;7:233. Published 2020 Jun 2. http://doi.org/10.3389/fmed.2020.00233
Chuchu N, Takwoingi Y, Dinnes J, et al. Smartphone applications for triaging adults with skin lesions that are suspicious for melanoma. Cochrane Database Syst Rev. 2018;12(12):CD013192. Published 2018 Dec 4. http://doi.org/10.1002/14651858.CD013192
Zafar K, Gilani SO, Waris A, et al. Skin Lesion Segmentation from Dermoscopic Images Using Convolutional Neural Network. Sensors (Basel). 2020;20(6):1601. Published 2020 Mar 13. http://doi.org/10.3390/s20061601
Erkol B, Moss RH, Stanley RJ, Stoecker WV, Hvatum E. Automatic lesion boundary detection in dermoscopy images using gradient vector flow snakes. Skin Res Technol. 2005;11(1):17-26. http://doi.org/10.1111/j.1600-0846.2005.00092.x
Jahanifar M, Zamani Tajeddin N, Mohammadzadeh Asl B, Gooya A. Supervised Saliency Map Driven Segmentation of Lesions in Dermoscopic Images. IEEE J Biomed Health Inform. 2019 Mar;23(2):509-518. http://doi.org/10.1109/JBHI.2018.2839647. Epub 2018 May 22. PMID: 29994323.
Li Y, Shen L. Skin Lesion Analysis towards Melanoma Detection Using Deep Learning Network. Sensors (Basel). 2018;18(2):556. Published 2018 Feb 11. http://doi.org/10.3390/s18020556
Erol R, Bayraktar M, Kockara S, Kaya S, Halic T. Texture based skin lesion abruptness quantification to detect malignancy. BMC Bioinformatics. 2017;18(Suppl 14):484. Published 2017 Dec 28. http://doi.org/10.1186/s12859-017-1892-5
Jaworek-Korjakowska J. Computer-Aided Diagnosis of Micro-Malignant Melanoma Lesions Applying Support Vector Machines. Biomed Res Int. 2016;2016:4381972. http://doi.org/10.1155/2016/4381972
Lingala M, Stanley RJ, Rader RK, et al. Fuzzy logic color detection: Blue areas in melanoma dermoscopy images. Comput Med Imaging Graph. 2014;38(5):403-410. http://doi.org/10.1016/j.compmedimag.2014.03.007
Celebi ME, Iyatomi H, Stoecker WV, et al. Automatic detection of blue-white veil and related structures in dermoscopy images. Comput Med Imaging Graph. 2008;32(8):670-677. http://doi.org/10.1016/j.compmedimag.2008.08.003
Khan A, Gupta K, Stanley RJ, et al. Fuzzy logic techniques for blotch feature evaluation in dermoscopy images. Comput Med Imaging Graph. 2009;33(1):50-57. http://doi.org/10.1016/j.compmedimag.2008.10.001
Haggenmüller S, Maron RC, Hekler A, Utikal JS, Barata C, Barnhill RL, Beltraminelli H, Berking C, Betz-Stablein B, Blum A, Braun SA, Carr R, Combalia M, Fernandez-Figueras MT, Ferrara G, Fraitag S, French LE, Gellrich FF, Ghoreschi K, Goebeler M, Guitera P, Haenssle HA, Haferkamp S, Heinzerling L, Heppt MV, Hilke FJ, Hobelsberger S, Krahl D, Kutzner H, Lallas A, Liopyris K, Llamas-Velasco M, Malvehy J, Meier F, Müller CSL, Navarini AA, Navarrete-Dechent C, Perasole A, Poch G, Podlipnik S, Requena L, Rotemberg VM, Saggini A, Sangueza OP, Santonja C, Schadendorf D, Schilling B, Schlaak M, Schlager JG, Sergon M, Sondermann W, Soyer HP, Starz H, Stolz W, Vale E, Weyers W, Zink A, Krieghoff-Henning E, Kather JN, von Kalle C, Lipka DB, Fröhling S, Hauschild A, Kittler H, Brinker TJ. Skin cancer classification via convolutional neural networks: systematic review of studies involving human experts. Eur J Cancer. 2021 Oct;156:202-216. http://doi.org/10.1016/j.ejca.2021.06.049. Epub 2021 Sep 8. PMID: 34509059.
Marchetti MA, Codella NCF, Dusza SW, et al. Results of the 2016 International Skin Imaging Collaboration International Symposium on Biomedical Imaging challenge: Comparison of the accuracy of computer algorithms to dermatologists for the diagnosis of melanoma from dermoscopic images. J Am Acad Dermatol. 2018;78(2):270-277.e1. http://doi.org/10.1016/j.jaad.2017.08.016
Ningrum DNA, Yuan SP, Kung WM, et al. Deep Learning Classifier with Patient's Metadata of Dermoscopic Images in Malignant Melanoma Detection. J Multidiscip Healthc. 2021;14:877-885. Published 2021 Apr 21. http://doi.org/10.2147/JMDH.S306284
Maron RC, Utikal JS, Hekler A, et al. Artificial Intelligence and Its Effect on Dermatologists' Accuracy in Dermoscopic Melanoma Image Classification: Web-Based Survey Study. J Med Internet Res. 2020;22(9):e18091. Published 2020 Sep 11. http://doi.org/10.2196/18091
Alsaade FW, Aldhyani THH, Al-Adhaileh MH. Developing a Recognition System for Diagnosing Melanoma Skin Lesions Using Artificial Intelligence Algorithms. Comput Math Methods Med. 2021;2021:9998379. Published 2021 May 15. http://doi1.org/0.1155/2021/9998379
Haenssle HA, Fink C, Schneiderbauer R, Toberer F, Buhl T, Blum A, Kalloo A, Hassen ABH, Thomas L, Enk A, Uhlmann L; Reader study level-I and level-II Groups, Alt C, Arenbergerova M, Bakos R, Baltzer A, Bertlich I, Blum A, Bokor-Billmann T, Bowling J, Braghiroli N, Braun R, Buder-Bakhaya K, Buhl T, Cabo H, Cabrijan L, Cevic N, Classen A, Deltgen D, Fink C, Georgieva I, Hakim-Meibodi LE, Hanner S, Hartmann F, Hartmann J, Haus G, Hoxha E, Karls R, Koga H, Kreusch J, Lallas A, Majenka P, Marghoob A, Massone C, Mekokishvili L, Mestel D, Meyer V, Neuberger A, Nielsen K, Oliviero M, Pampena R, Paoli J, Pawlik E, Rao B, Rendon A, Russo T, Sadek A, Samhaber K, Schneiderbauer R, Schweizer A, Toberer F, Trennheuser L, Vlahova L, Wald A, Winkler J, Wölbing P, Zalaudek I. Man against machine: diagnostic performance of a deep learning convolutional neural network for dermoscopic melanoma recognition in comparison to 58 dermatologists. Ann Oncol. 2018 Aug 1;29(8):1836-1842. http://doi.org/10.1093/annonc/mdy166. PMID: 29846502
Gareau DS, Browning J, Correa Da Rosa J, et al. Deep learning-level melanoma detection by interpretable machine learning and imaging biomarker cues. J Biomed Opt. 2020;25(11):112906. http://doi.org/10.1117/1.JBO.25.11.112906
Marchetti MA, Liopyris K, Dusza SW, et al. Computer algorithms show potential for improving dermatologists' accuracy to diagnose cutaneous melanoma: Results of the International Skin Imaging Collaboration 2017. J Am Acad Dermatol. 2020;82(3):622-627. http://doi.org/10.1016/j.jaad.2019.07.016
Yu C, Yang S, Kim W, et al. Acral melanoma detection using a convolutional neural network for dermoscopy images [published correction appears in PLoS One. 2018 Apr 24;13(4):e0196621]. PLoS One. 2018;13(3):e0193321. Published 2018 Mar 7. http://doi.org/10.1371/journal.pone.0193321
Nasiri S, Helsper J, Jung M, Fathi M. DePicT Melanoma Deep-CLASS: a deep convolutional neural networks approach to classify skin lesion images. BMC Bioinformatics. 2020;21(Suppl 2):84. Published 2020 Mar 11. http://doi.org/10.1186/s12859-020-3351-y
Gilmore SJ. Automated decision support in melanocytic lesion management. PLoS One. 2018;13(9):e0203459. Published 2018 Sep 7. http://doi.org/10.1371/journal.pone.0203459
Połap D, Winnicka A, Serwata K, Kęsik K, Woźniak M. An Intelligent System for Monitoring Skin Diseases. Sensors (Basel). 2018;18(8):2552. Published 2018 Aug 4. http://doi.org/10.3390/s18082552
Harangi B. Skin lesion classification with ensembles of deep convolutional neural networks. J Biomed Inform. 2018 Oct;86:25-32. http://doi.org/10.1016/j.jbi.2018.08.006. Epub 2018 Aug 10. PMID: 30103029.
Messadi M, Bessaid A, Taleb-Ahmed A. Extraction of specific parameters for skin tumour classification. J Med Eng Technol. 2009;33(4):288-295. http://doi.org/10.1080/03091900802451315
Stanley RJ, Stoecker WV, Moss RH. A relative color approach to color discrimination for malignant melanoma detection in dermoscopy images. Skin Res Technol. 2007;13(1):62-72. http://doi.org/10.1111/j.1600-0846.2007.00192.x
Gareau DS, Correa da Rosa J, Yagerman S, et al. Digital imaging biomarkers feed machine learning for melanoma screening. Exp Dermatol. 2017;26(7):615-618. http://doi.org/10.1111/exd.13250
Dascalu A, David EO. Skin cancer detection by deep learning and sound analysis algorithms: A prospective clinical study of an elementary dermoscope. EBioMedicine. 2019;43:107-113. http://doi.org/10.1016/j.ebiom.2019.04.055
Foahom Gouabou AC, Damoiseaux JL, Monnier J, Iguernaissi R, Moudafi A, Merad D. Ensemble Method of Convolutional Neural Networks with Directed Acyclic Graph Using Dermoscopic Images: Melanoma Detection Application. Sensors (Basel). 2021;21(12):3999. Published 2021 Jun 10. http://doi.org/10.3390/s21123999
Phillips M, Greenhalgh J, Marsden H, Palamaras I. Detection of Malignant Melanoma Using Artificial Intelligence: An Observational Study of Diagnostic Accuracy. Dermatol Pract Concept. 2019 Dec 31;10(1):e2020011. doi: 10.5826/dpc.1001a11. PMID: 31921498; PMCID: PMC6936633.
Sondermann W, Utikal JS, Enk AH, Schadendorf D, Klode J, Hauschild A, Weichenthal M, French LE, Berking C, Schilling B, Haferkamp S, Fröhling S, von Kalle C, Brinker TJ. Prediction of melanoma evolution in melanocytic nevi via artificial intelligence: A call for prospective data. Eur J Cancer. 2019 Sep;119:30-34. http://doi.org/10.1016/j.ejca.2019.07.009. Epub 2019 Aug 8. Erratum in: Eur J Cancer. 2019 Dec;123:171. PMID: 31401471.
Efimenko M, Ignatev A, Koshechkin K. Review of medical image recognition technologies to detect melanomas using neural networks. BMC Bioinformatics. 2020;21(Suppl 11):270. Published 2020 Sep 14. http://doi.org/10.1186/s12859-020-03615-1
Nelson CA, Pérez-Chada LM, Creadore A, et al. Patient Perspectives on the Use of Artificial Intelligence for Skin Cancer Screening: A Qualitative Study. JAMA Dermatol. 2020;156(5):501-512. http://doi.org/10.1001/jamadermatol.2019.5014
El-Khatib H, Popescu D, Ichim L. Deep Learning-Based Methods for Automatic Diagnosis of Skin Lesions. Sensors (Basel). 2020;20(6):1753. Published 2020 Mar 21. http://doi.org/10.3390/s20061753. PMID: 32245258; PMCID: PMC7147720.
Brinker TJ, Hekler A, Enk AH, Berking C, Haferkamp S, Hauschild A, Weichenthal M, Klode J, Schadendorf D, Holland-Letz T, von Kalle C, Fröhling S, Schilling B, Utikal JS. Deep neural networks are superior to dermatologists in melanoma image classification. Eur J Cancer. 2019 Sep;119:11-17. http://doi.org/10.1016/j.ejca.2019.05.023. Epub 2019 Aug 8. PMID: 31401469.
Published
How to Cite
Issue
Section
Copyright (c) 2022 Peyman Ramezanpour; Shahram Sasani, Shiva Golshahi Rad
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Copyright holder(s) granted JSR a perpetual, non-exclusive license to distriute & display this article.