A Microfluidic Chip Designed for Stimulating Drug Diffusion
DOI:
https://doi.org/10.47611/jsrhs.v11i2.2644Keywords:
drug delivery, diffusion, microfluidic chip, cell cultureAbstract
Two-dimensional, three-dimensional or microfluidic chip-based cell cultures have been extensively used to identify effective compounds for drug development in the past few decades. Nevertheless, these traditional strategies of cell cultures are unable to capture the in vivo process of drug administration and diffusion. Here, we exploited the techniques of microfluidic chips and developed a new platform to dynamically simulate drug delivery and diffusion. Using this platform, we designed two experiments to quantify the diffusivity from source channel to target channel: (1) the pH value in target channel regulated by the diffusion of input solution from source channel; (2) the oxygen concentration in target channel regulated by the diffusion of oxygen produced by oxygen-enriched water in source channel. The input channel and the target channel were separated by nanoporous membranes mimicking biological tissue walls. These two experiments as proof-of-concept demonstrated that our platform can simulate the in vivo process of drug diffusion and be applied to study drug diffusivity.
Downloads
References or Bibliography
Barrila, J., Radtke, A. L., Crabbé, A., Sarker, S. F., Herbst-Kralovetz, M. M., Ott, C. M., & Nickerson, C. A. (2010). Organotypic 3D cell culture models: using the rotating wall vessel to study host–pathogen interactions. Nature Reviews Microbiology, 8(11), 791–801. https://doi.org/10.1038/nrmicro2423
Bezrukov, A. N., & Galyametdinov, Yu. G. (2021). Evaluation of Diffusion Coefficients of Small Ions in a Microfluidic Channel. Bulletin of the Russian Academy of Sciences: Physics, 85(8), 889–893. https://doi.org/10.3103/s1062873821080049
Cassano, D., Santi, M., D’Autilia, F., Mapanao, A. K., Luin, S., & Voliani, V. (2019). Photothermal effect by NIR-responsive excretable ultrasmall-in-nano architectures. Materials Horizons, 6(3), 531–537. https://doi.org/10.1039/c9mh00096h
Cussler, E. L. (1997). Diffusion: Mass Transfer in Fluid Systems (2nd ed.). New York: Cambridge University Press. ISBN 0-521-45078-0.
Drug discovery - Latest research and news | Nature. (2019, April 22). Retrieved from Nature.com website: https://www.nature.com/subjects/drug-discovery
Drug absorption: Le, J. (2020, October). Drug Absorption - Clinical Pharmacology. Retrieved from MSD Manual Professional Edition website: https://www.msdmanuals.com/professional/clinical-pharmacology/pharmacokinetics/drug-absorption
Nahler, G. (2017). D. Dictionary of Pharmaceutical Medicine, 77–100.
https://doi.org/10.1007/978-3-319-50669-2_4
Ejeta, F. (2021). Recent Advances of Microfluidic Platforms for Controlled Drug Delivery in Nanomedicine. Drug Design, Development and Therapy, Volume 15, 3881–3891. https://doi.org/10.2147/dddt.s324580
Guo, Q., Zhang, L., Liu, J., Li, Z., Li, J., Zhou, W., Wang, H., Li, J., Liu, D., Yu, X., Zhang, J. (2021). Multifunctional microfluidic chip for cancer diagnosis and treatment. Nanotheranostics, 5(1), 73–89. https://doi.org/10.7150/ntno.49614
Grathwohl, P. (1998). Diffusion in natural porous media: Contaminant transport, sorption / desorption and dissolution kinetics. Kluwer Academic. ISBN 0-7923-8102-5.
Gómez-Sjöberg, R., Leyrat, A. A., Pirone, D. M., Chen, C. S., & Quake, S. R. (2007). Versatile, Fully Automated, Microfluidic Cell Culture System. Analytical Chemistry, 79(22), 8557–8563. https://doi.org/10.1021/ac071311w
He, H., Liang, Q., Shin, M. C., Lee, K., Gong, J., Ye, J., Liu, Q., Wang, J., Yang, V. (2013). Significance and strategies in developing delivery systems for bio-macromolecular drugs. Frontiers of Chemical Science and Engineering, 7(4), 496–507. https://doi.org/10.1007/s11705-013-1362-1
How can Lab on Chip speed up COVID19 vaccine | Microfluidics | Smart Tech | Scientific Engineer. (2020, March 7). Retrieved February 23, 2022, from www.youtube.com website: https://youtu.be/-2tGPcAJajg
Lockwood, S. Y., Meisel, J. E., Monsma, F. J., & Spence, D. M. (2016). A Diffusion-Based and Dynamic 3D-Printed Device That Enables Parallel in Vitro Pharmacokinetic Profiling of Molecules. Analytical Chemistry, 88(3), 1864–1870. https://doi.org/10.1021/acs.analchem.5b04270
Maiti, S., & Sen, K. K. (2017). Introductory Chapter: Drug Delivery Concepts. Advanced Technology for Delivering Therapeutics. https://doi.org/10.5772/65245
Park, K. (2014). Controlled drug delivery systems: Past forward and future back. Journal of Controlled Release, 190, 3–8. https://doi.org/10.1016/j.jconrel.2014.03.054
TED-Ed. (2017, March 15). How does your body process medicine? - Celine Valery. YouTube. https://youtu.be/uOcpsXMJcJk
Siepmann, J., & Siepmann, F. (2012). Modeling of diffusion controlled drug delivery. Journal of Controlled Release, 161(2), 351–362. https://doi.org/10.1016/j.jconrel.2011.10.006
Tzanova, M. M., Randelov, E., Stein, P. C., Hiorth, M., & di Cagno, M. P. (2021). Towards a better mechanistic comprehension of drug permeation and absorption: Introducing the diffusion-partitioning interplay. International Journal of Pharmaceutics, 608, 121116. https://doi.org/10.1016/j.ijpharm.2021.121116
Whitesides, G. M. (2006). The origins and the future of microfluidics. Nature, 442(7101), 368–373. https://doi.org/10.1038/nature05058
William W. Muir, Chapter 15 - Factors Influencing Analgesic Drug Selection, Dose, and Routes of Drug Administration, Editor(s): James S. Gaynor, William W. Muir, Handbook of Veterinary Pain Management (Third Edition), Mosby, 2015, Pages 302-334, ISBN 9780323089357, https://doi.org/10.1016/B978-0-323-08935-7.00015-6. (https://www.sciencedirect.com/science/article/pii/B9780323089357000156)
Xie, X., Kelly, C., Liu, T., Lang, R. J., Gandolfo, S., Boukataya, Y., & Livermore, C. (2018). ORIGAMI-ENABLED MICROFLUIDICS. 2018 Solid-State, Actuators, and Microsystems Workshop Technical Digest. https://doi.org/10.31438/trf.hh2018.108
Xu, X., Farach-Carson, M. C., & Jia, X. (2014). Three-dimensional in vitro tumor models for cancer research and drug evaluation. Biotechnology Advances, 32(7), 1256–1268. https://doi.org/10.1016/j.biotechadv.2014.07.009
Zurlo, J., Rudacille, D., & Goldberg, A. (2006, February 25). CAAT: Animals and Alternatives in Testing: History, Science, and Ethics. Retrieved from web.archive.org website: https://web.archive.org/web/20060225204205/http://caat.jhsph.edu/pubs/animal_alts/appendix_c.htm
Published
How to Cite
Issue
Section
Copyright (c) 2022 Chenchen Zheng; Xin Xie
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Copyright holder(s) granted JSR a perpetual, non-exclusive license to distriute & display this article.