Epigenetics and Genetics of Schizophrenia
DOI:
https://doi.org/10.47611/jsrhs.v11i2.2629Keywords:
Genetics, Epigenetics, SchizophreniaAbstract
Millions of people around the world suffer from schizophrenia and the resulting delusions, social withdrawal and other symptoms. All of these symptoms have treatments available such as anti-psychotics and therapy. However, these treatments are merely symptomatic and do not address the root of the disorder. The treatments can dull the impact of the symptoms of schizophrenia but cannot treat the disorder itself, therefore more effective treatments must be offered. Schizophrenia is an extremely heritable disorder, so genetics, as well as epigenetics, plays a crucial role in the prevalence and severity of the disorder. Studying the epigenetics and genetics of schizophrenia can help to gain a more thorough understanding of the disorder to help develop and test treatments that aren’t just symptomatic. There have been various studies searching for parts of the genome that could play a role in an individual’s likelihood to develop schizophrenia and gene therapy could be used to edit these parts of the genome. Epigenetics refers to the alteration in how one’s body reads the genome using histone modification. Although there is minimal research in the area and as a result, there are also no treatments currently being researched or tested, epigenetic treatments have the potential to become a revolutionary treatment for schizophrenia. However, considering the lack of knowledge and research surrounding epigenetics, currently, genetic treatment has more likelihood of being a useful treatment in the near future. Nonetheless, increased research about epigenetics and genetics can help create more treatments to help those suffering from this disorder.
Downloads
References or Bibliography
Ananloo, E. S. (2018). Genetics and epigenetics of schizophrenia. Psychotic Disorders - An Update. https://doi.org/10.5772/intechopen.75930
Föcking, M., Doyle, B., Munawar, N., Dillon, E. T., Cotter, D., & Cagney, G. (2019). Epigenetic factors in schizophrenia: Mechanisms and experimental approaches. Molecular Neuropsychiatry, 5(1), 6–12. https://doi.org/10.1159/000495063
Hannon, E., Dempster, E., Viana, J., Burrage, J., Smith, A. R., Macdonald, R., St Clair, D., Mustard, C., Breen, G., Therman, S., Kaprio, J., Toulopoulou, T., Pol, H. E., Bohlken, M. M., Kahn, R. S., Nenadic, I., Hultman, C. M., Murray, R. M., Collier, D. A., … Mill, J. (2016). An integrated genetic-epigenetic analysis of schizophrenia: Evidence for co-localization of genetic associations and differential DNA methylation. Genome Biology, 17(1). https://doi.org/10.1186/s13059-016-1041-x
Hannon, E., Dempster, E., Viana, J., Burrage, J., Smith, A. R., Macdonald, R., St Clair, D., Mustard, C., Breen, G., Therman, S., Kaprio, J., Toulopoulou, T., Pol, H. E., Bohlken, M. M., Kahn, R. S., Nenadic, I., Hultman, C. M., Murray, R. M., Collier, D. A., … Mill, J. (2016). An integrated genetic-epigenetic analysis of schizophrenia: Evidence for co-localization of genetic associations and differential DNA methylation. Genome Biology, 17(1). https://doi.org/10.1186/s13059-016-1041-x
Holloway, T., & González-Maeso, J. (2015). Epigenetic mechanisms of serotonin signaling. ACS Chemical Neuroscience, 6(7), 1099–1109. https://doi.org/10.1021/acschemneuro.5b00033
Hor, K., & Taylor, M. (2010). Review: Suicide and schizophrenia: A systematic review of rates and risk factors. Journal of Psychopharmacology, 24(4_suppl), 81–90. https://doi.org/10.1177/1359786810385490
Ibi, D., & González-Maeso, J. (2015). Epigenetic signaling in Schizophrenia. Cellular Signalling, 27(10), 2131–2136. https://doi.org/10.1016/j.cellsig.2015.06.003
Khokhar, J. Y., Dwiel, L. L., Henricks, A. M., Doucette, W. T., & Green, A. I. (2018). The link between schizophrenia and substance use disorder: A unifying hypothesis. Schizophrenia Research, 194, 78–85. https://doi.org/10.1016/j.schres.2017.04.016
Maunakea, A. K., Nagarajan, R. P., Bilenky, M., Ballinger, T. J., D’Souza, C., Fouse, S. D., Johnson, B. E., Hong, C., Nielsen, C., Zhao, Y., Turecki, G., Delaney, A., Varhol, R., Thiessen, N., Shchors, K., Heine, V. M., Rowitch, D. H., Xing, X., Fiore, C., … Costello, J. F. (2010). Conserved role of intragenic DNA methylation in regulating alternative promoters. Nature, 466(7303), 253–257. https://doi.org/10.1038/nature09165
Maurano, M. T., Humbert, R., Rynes, E., Thurman, R. E., Haugen, E., Wang, H., Reynolds, A. P., Sandstrom, R., Qu, H., Brody, J., Shafer, A., Neri, F., Lee, K., Kutyavin, T., Stehling-Sun, S., Johnson, A. K., Canfield, T. K., Giste, E., Diegel, M., … Stamatoyannopoulos, J. A. (2012). Systematic localization of common disease-associated variation in regulatory DNA. Science, 337(6099), 1190–1195. https://doi.org/10.1126/science.1222794
Savić, N., & Schwank, G. (2015). Advances in therapeutic CRISPR/cas9 genome editing. Translational Research, 168, 15–21. https://doi.org/10.1016/j.trsl.2015.09.008
Sher, L., & Kahn, R. S. (2019). Suicide in schizophrenia: An educational overview. Medicina, 55(7), 361. https://doi.org/10.3390/medicina55070361
Shorter, K. R., & Miller, B. H. (2015). Epigenetic mechanisms in schizophrenia. Progress in Biophysics and Molecular Biology, 118(1-2), 1–7. https://doi.org/10.1016/j.pbiomolbio.2015.04.008
Stępnicki, P., Kondej, M., & Kaczor, A. A. (2018). Current concepts and treatments of schizophrenia. Molecules, 23(8), 2087. https://doi.org/10.3390/molecules23082087
Sullivan, P. F. (2005). The genetics of schizophrenia. PLoS Medicine, 2(7). https://doi.org/10.1371/journal.pmed.0020212
YouTube. (2019). Living with Schizoaffective Disorder (Experiencing Psychosis, Paranoid Delusions and Hallucinations). YouTube. Retrieved January 8, 2022, from https://www.youtube.com/watch?v=GU8VmJsX6-s.
Published
How to Cite
Issue
Section
Copyright (c) 2022 Dyuti Ganesh
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Copyright holder(s) granted JSR a perpetual, non-exclusive license to distriute & display this article.