Investigating the DNA Damage Response Elicited by Transposable Element Integration
DOI:
https://doi.org/10.47611/jsrhs.v11i2.2544Keywords:
transposable elements, DNA damage response, CRISPR/Cas12kAbstract
All organisms encounter DNA damage daily through UV exposure, carcinogens, and more. Therefore, there must be a conserved system in place to repair such damage. The DNA Damage Response (DDR) is the conserved system that protects and repairs DNA lesions and breaks. It is known that some mobile genetic elements, such as transposable elements (TEs), can elicit the DDR to aid the transposition efficiency while maintaining a low mutagenesis rate. However, other TE and CRISPR/Cas9 studies propose that DDR activation can lead to off target and mutagenic effects. With the search for a better genetic editor, the CRISPR/Cas12k system has become a hot target due to its precise prokaryotic genome editing through transposition. By considering the mechanisms at play in endogenous TEs, retrotransposons, and CRISPR/Cas9, we can achieve a clearer understanding of the eukaryotic cell’s response to genetic modification through the CRISPR/Cas12k system.
Downloads
References or Bibliography
Bourque, G., Burns, K. H., Gehring, M., Gorbunova, V., Seluanov, A., Hammell, M., Imbeault, M., Izsvák, Z., Levin, H. L., Macfarlan, T. S., Mager, D. L., & Feschotte, C. (2018). Ten things you should know about transposable elements 06 Biological Sciences 0604 Genetics. Genome Biology, 19(1). https://doi.org/10.1186/s13059-018-1577-z
Cubbon, A., Ivancic-Bace, I., & Bolt, E. L. (2018). CRISPR-Cas immunity, DNA repair and genome stability. In Bioscience Reports (Vol. 38, Issue 5, pp. 1–10). Portland Press Ltd. https://doi.org/10.1042/BSR20180457
Dick, R. A., Xu, C., Morado, D. R., Kravchuk, V., Ricana, C. L., Lyddon, T. D., Broad, A. M., Feathers, J. R., Johnson, M. C., Vogt, V. M., Perilla, J. R., Briggs, J. A. G., & Schur, F. K. M. (2020). Structures of immature EIAV Gag lattices reveal a conserved role for IP6 in lentivirus assembly. PLoS Pathogens, 16(1). https://doi.org/10.1371/journal.ppat.1008277
Henssen, A. G., & Kentsis, A. (2018). Emerging functions of DNA transposases and oncogenic mutators in childhood cancer development. In JCI insight (Vol. 3, Issue 20). NLM (Medline). https://doi.org/10.1172/jci.insight.123172
Jackson, S. P., & Bartek, J. (2009). The DNA-damage response in human biology and disease. In Nature (Vol. 461, Issue 7267, pp. 1071–1078). https://doi.org/10.1038/nature08467
Lans, H., Marteijn, J. A., & Vermeulen, W. (2012). ATP-dependent chromatin remodeling in the DNA-damage response. In Epigenetics and Chromatin (Vol. 5, Issue 1). https://doi.org/10.1186/1756-8935-5-4
Ledford, H., & Callaway, E. (2020). PIONEERS OF CRISPR GENE EDITING WIN CHEMISTRY NOBEL.
Miskey, C., Izsvák, Z., Kawakami, K., & Ivics, Z. (2005). DNA transposons in vertebrate functional genomics. In Cellular and Molecular Life Sciences (Vol. 62, Issue 6, pp. 629–641). https://doi.org/10.1007/s00018-004-4232-7
Moon, S. bin, Kim, D. Y., Ko, J. H., & Kim, Y. S. (2019). Recent advances in the CRISPR genome editing tool set. In Experimental and Molecular Medicine (Vol. 51, Issue 11). Springer Nature. https://doi.org/10.1038/s12276-019-0339-7
Park, J.-U., Tsai, A., Mehrotra, E., Petassi, M. T., Ke, A., Peters, J. E., & Kellogg, E. H. (2021). Structural basis for target-site selection in RNA-guided DNA transposition systems. https://doi.org/10.1101/2021.05.25.445634
Sadofsky, M. J. (2001). The RAG proteins in V(D)J recombination: more than just a nuclease. In SURVEY AND SUMMARY (Vol. 29, Issue 7).
Strecker, J., Ladha, A., Gardner, Z., Schmid-Burgk, J. L., Makarova, K. S., Koonin, E. v., & Zhang, F. (2019). RNA-guided DNA insertion with CRISPR-associated transposases. Science, 364(6448), 48–53. https://doi.org/10.1126/science.aax9181
Suzuki, Y., Chew, M. L., & Suzuki, Y. (2012). Role of host-encoded proteins in restriction of retroviral integration. In Frontiers in Microbiology (Vol. 3, Issue JUN). Frontiers Research Foundation. https://doi.org/10.3389/fmicb.2012.00227
van Kampen, S. J., & van Rooij, E. (2019). CRISPR Craze to Transform Cardiac Biology. In Trends in Molecular Medicine (Vol. 25, Issue 9, pp. 791–802). Elsevier Ltd. https://doi.org/10.1016/j.molmed.2019.06.008
Weinstock, D. M., & Jasin, M. (2006). Alternative Pathways for the Repair of RAG-Induced DNA Breaks. Molecular and Cellular Biology, 26(1), 131–139. https://doi.org/10.1128/mcb.26.1.131-139.2006
Yakovenko, I., Agronin, J., Smith, L. C., & Oren, M. (2021). Guardian of the Genome: An Alternative RAG/Transib Co-Evolution Hypothesis for the Origin of V(D)J Recombination. Frontiers in Immunology, 12. https://doi.org/10.3389/fimmu.2021.709165
Yant, S. R., & Kay, M. A. (2003). Nonhomologous-End-Joining Factors Regulate DNA Repair Fidelity during Sleeping Beauty Element Transposition in Mammalian Cells . Molecular and Cellular Biology, 23(23), 8505–8518. https://doi.org/10.1128/mcb.23.23.8505-8518.2003
Yoshinaga, N., Shindo, K., Matsui, Y., Takiuchi, Y., Fukuda, H., Nagata, K., Shirakawa, K., Kobayashi, M., Takeda, S., & Takaori-Kondo, A. (2019). A screening for DNA damage response molecules that affect HIV-1 infection. Biochemical and Biophysical Research Communications, 513(1), 93–98. https://doi.org/10.1016/j.bbrc.2019.03.168
Zhao, S., Jiang, E., Chen, S., Gu, Y., Shangguan, A. J., Lv, T., Luo, L., & Yu, Z. (2016). PiggyBac transposon vectors: The tools of the human gene encoding. In Translational Lung Cancer Research (Vol. 5, Issue 1, pp. 120–125). AME Publishing Company. https://doi.org/10.3978/j.issn.2218-6751.2016.01.05
Published
How to Cite
Issue
Section
Copyright (c) 2022 Naima Pyarali
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Copyright holder(s) granted JSR a perpetual, non-exclusive license to distriute & display this article.