Different Therapeutic Approaches to Alzheimer's Disease

Authors

  • Thomas Magee Bellingham High School
  • Yana Zubarev Bellingham High School

DOI:

https://doi.org/10.47611/jsrhs.v11i1.2493

Keywords:

Beta - secretase, Alpha - Secretase, Beta - Amyloid, Gamma Secretase, Amyloid Precursor Protein

Abstract

Amyloid precursor protein is the precursor to the biochemical markers for Alzheimer's disease. (1–5)There has been much research in the field of biochemistry to attempt to understand how these proteins interact with each other, both on a biochemical level and on a neurological level. This research has led scientists to conclusions about these proteins' substrates, structure, and functionality outside of the formation of Alzheimer's disease. Amyloid-Beta, for example, is the main biochemical marker for Alzheimer's disease, however, many of Amyloid-Beta’s precursors have many substrates outside of APP that are key in overall homeostasis and molecular functionality. (4,6–12)There have been many attempts to restrict, increase, and alter the expression of these proteins in hope of treating Alzheimer's. (2,9,11,13–16) Here, we break down the core proteins responsible for these interactions and give an overview of current therapeutic approaches to Alzheimer’s. 

Downloads

Download data is not yet available.

Author Biography

Yana Zubarev, Bellingham High School

Mentor

Science Department 

Chemistry Teacher 

References or Bibliography

References

(1) A Novel Function of Monomeric Amyloid β-Protein Serving as an Antioxidant Molecule against Metal-Induced Oxidative Damage | Journal of Neuroscience https://www.jneurosci.org/content/22/12/4833 (accessed 2021 -11 -14).

(2) Bergström, P.; Agholme, L.; Nazir, F. H.; Satir, T. M.; Toombs, J.; Wellington, H.; Strandberg, J.; Bontell, T. O.; Kvartsberg, H.; Holmström, M.; Boreström, C.; Simonsson, S.; Kunath, T.; Lindahl, A.; Blennow, K.; Hanse, E.; Portelius, E.; Wray, S.; Zetterberg, H. Amyloid Precursor Protein Expression and Processing Are Differentially Regulated during Cortical Neuron Differentiation. Sci. Rep. 2016, 6 (1), 29200. https://doi.org/10.1038/srep29200.

(3) The metalloproteinase ADAM10: A useful therapeutic target? - ScienceDirect https://www.sciencedirect.com/science/article/pii/S016748891730157X (accessed 2021 -11 -14).

(4) Rabbito, A.; Dulewicz, M.; Kulczyńska-Przybik, A.; Mroczko, B. Biochemical Markers in Alzheimer’s Disease. Int. J. Mol. Sci. 2020, 21 (6), 1989. https://doi.org/10.3390/ijms21061989.

(5) Pharmaceuticals | Free Full-Text | Alpha-Secretase ADAM10 Regulation: Insights into Alzheimer’s Disease Treatment https://www.mdpi.com/1424-8247/11/1/12 (accessed 2021 -11 -14).

(6) Baruch-Suchodolsky, R.; Fischer, B. Aβ40, Either Soluble or Aggregated, Is a Remarkably Potent Antioxidant in Cell-Free Oxidative Systems. Biochemistry 2009, 48 (20), 4354–4370. https://doi.org/10.1021/bi802361k.

(7) Hillen, H. The Beta Amyloid Dysfunction (BAD) Hypothesis for Alzheimer’s Disease. Front. Neurosci. 2019, 13, 1154. https://doi.org/10.3389/fnins.2019.01154.

(8) Proteolytic processing of Alzheimer’s β-amyloid precursor protein https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3254787/ (accessed 2021 -11 -14).

(9) Function of β‐amyloid in cholesterol transport: a lead to neurotoxicity - Yao - 2002 - The FASEB Journal - Wiley Online Library https://faseb.onlinelibrary.wiley.com/doi/10.1096/fj.02-0285fje (accessed 2021 -11 -14).

(10) What Happens to the Brain in Alzheimer’s Disease? http://www.nia.nih.gov/health/what-happens-brain-alzheimers-disease (accessed 2021 -11 -27).

(11) De Strooper, B.; Vassar, R.; Golde, T. The Secretases: Enzymes with Therapeutic Potential in Alzheimer Disease. Nat. Rev. Neurol. 2010, 6 (2), 99–107. https://doi.org/10.1038/nrneurol.2009.218.

(12) What’s hAPPening at synapses? The role of amyloid β-protein precursor and β-amyloid in neurological disorders | Molecular Psychiatry https://www.nature.com/articles/mp2012122?error=cookies_not_supported&code=b4890bba-cc%2083-4457-bd38-23de6ef8a18b (accessed 2021 -11 -14).

(13) Zhao, L. N.; Long, H.; Mu, Y.; Chew, L. Y. The Toxicity of Amyloid β Oligomers. Int. J. Mol. Sci. 2012, 13 (6), 7303–7327. https://doi.org/10.3390/ijms13067303.

(14) He, G.; Luo, W.; Li, P.; Remmers, C.; Netzer, W.; Hendrick, J.; Bettayeb, K.; Flajolet, M.; Gorelick, F.; Wennogle, L. P.; Greengard, P. Gamma-Secretase Activating Protein, a Therapeutic Target for Alzheimer’s Disease. Nature 2010, 467 (7311), 95–98. https://doi.org/10.1038/nature09325.

(15) De Jonghe, C.; Esselens, C.; Kumar-Singh, S.; Craessaerts, K.; Serneels, S.; Checler, F.; Annaert, W.; Van Broeckhoven, C.; De Strooper, B. Pathogenic APP Mutations near the γ-Secretase Cleavage Site Differentially Affect Aβ Secretion and APP C-Terminal Fragment Stability. Hum. Mol. Genet. 2001, 10 (16), 1665–1671. https://doi.org/10.1093/hmg/10.16.1665.

(16) Mattson, M. P. Pathways Towards and Away from Alzheimer’s Disease. Nature 2004, 430 (7000), 631–639. https://doi.org/10.1038/nature02621.

(17) TCW, J.; Goate, A. M. Genetics of β-Amyloid Precursor Protein in Alzheimer’s Disease. Cold Spring Harb. Perspect. Med. 2017, 7 (6), a024539. https://doi.org/10.1101/cshperspect.a024539.

(18) The same γ‐secretase accounts for the multiple intramembrane cleavages of APP - Zhao - 2007 - Journal of Neurochemistry - Wiley Online Library https://onlinelibrary.wiley.com/doi/10.1111/j.1471-4159.2006.04302.x (accessed 2021 -11 -14).

(19) Lloyd, G. M.; Trejo-Lopez, J. A.; Xia, Y.; McFarland, K. N.; Lincoln, S. J.; Ertekin-Taner, N.; Giasson, B. I.; Yachnis, A. T.; Prokop, S. Prominent Amyloid Plaque Pathology and Cerebral Amyloid Angiopathy in APP V717I (London) Carrier – Phenotypic Variability in Autosomal Dominant Alzheimer’s Disease. Acta Neuropathol. Commun. 2020, 8, 31. https://doi.org/10.1186/s40478-020-0891-3.

(20) Hoe, H.; Lee, H.; Pak, D. T. S. The Upside of APP at Synapses. CNS Neurosci. Ther. 2010, 18 (1), 47–56. https://doi.org/10.1111/j.1755-5949.2010.00221.x.

(21) Tarasoff-Conway, J. M.; Carare, R. O.; Osorio, R. S.; Glodzik, L.; Butler, T.; Fieremans, E.; Axel, L.; Rusinek, H.; Nicholson, C.; Zlokovic, B. V.; Frangione, B.; Blennow, K.; Ménard, J.; Zetterberg, H.; Wisniewski, T.; de Leon, M. J. Clearance Systems in the Brain—Implications for Alzheimer Disease. Nat. Rev. Neurol. 2015, 11 (8), 457–470. https://doi.org/10.1038/nrneurol.2015.119.

(22) Beta secretase - Proteopedia, life in 3D https://proteopedia.org/wiki/index.php/Beta_secretase (accessed 2021 -11 -14).

(23) Gorfe, A. A.; Caflisch, A. Functional Plasticity in the Substrate Binding Site of Beta-Secretase. Struct. Lond. Engl. 1993 2005, 13 (10), 1487–1498. https://doi.org/10.1016/j.str.2005.06.015.

(24) Beta-secretase: Structure, Function, and Evolution https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2921875/#R7 (accessed 2021 -11 -14).

(25) Chow, V. W.; Mattson, M. P.; Wong, P. C.; Gleichmann, M. An Overview of APP Processing Enzymes and Products. Neuromolecular Med. 2010, 12 (1), 1–12. https://doi.org/10.1007/s12017-009-8104-z.

(26) Identification of Distinct γ-Secretase Complexes with Different APH-1 Variants* - Journal of Biological Chemistry https://www.jbc.org/article/S0021-9258(20)72591-3/fulltext (accessed 2021 -11 -14).

(27) Kim, S.-H.; Yin, Y. I.; Li, Y.-M.; Sisodia, S. S. Evidence That Assembly of an Active γ-Secretase Complex Occurs in the Early Compartments of the Secretory Pathway *. J. Biol. Chem. 2004, 279 (47), 48615–48619. https://doi.org/10.1074/jbc.C400396200.

(28) Capell, A.; Beher, D.; Prokop, S.; Steiner, H.; Kaether, C.; Shearman, M. S.; Haass, C. γ-Secretase Complex Assembly within the Early Secretory Pathway *. J. Biol. Chem. 2005, 280 (8), 6471–6478. https://doi.org/10.1074/jbc.M409106200.

(29) The Many Substrates of Presenilin/γ-Secretase https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3281584/ (accessed 2021 -11 -14).

(30) Amyloid beta: structure, biology and structure-based therapeutic development | Acta Pharmacologica Sinica https://www.nature.com/articles/aps201728 (accessed 2021 -11 -14).

(31) Kroth, H.; Ansaloni, A.; Varisco, Y.; Jan, A.; Sreenivasachary, N.; Rezaei-Ghaleh, N.; Giriens, V.; Lohmann, S.; López-Deber, M. P.; Adolfsson, O.; Pihlgren, M.; Paganetti, P.; Froestl, W.; Nagel-Steger, L.; Willbold, D.; Schrader, T.; Zweckstetter, M.; Pfeifer, A.; Lashuel, H. A.; Muhs, A. Discovery and Structure Activity Relationship of Small Molecule Inhibitors of Toxic β-Amyloid-42 Fibril Formation *. J. Biol. Chem. 2012, 287 (41), 34786–34800. https://doi.org/10.1074/jbc.M112.357665.

(32) Lashuel, H. A.; Hartley, D. M.; Balakhaneh, D.; Aggarwal, A.; Teichberg, S.; Callaway, D. J. E. New Class of Inhibitors of Amyloid-β Fibril Formation: IMPLICATIONS FOR THE MECHANISM OF PATHOGENESIS IN ALZHEIMER’S DISEASE *. J. Biol. Chem. 2002, 277 (45), 42881–42890. https://doi.org/10.1074/jbc.M206593200.

(33) Zhou, S.; Zhou, H.; Walian, P. J.; Jap, B. K. CD147 Is a Regulatory Subunit of the γ-Secretase Complex in Alzheimer’s Disease Amyloid β-Peptide Production. Proc. Natl. Acad. Sci. U. S. A. 2005, 102 (21), 7499–7504. https://doi.org/10.1073/pnas.0502768102.

(34) Ward, M. W.; Concannon, C. G.; Whyte, J.; Walsh, C. M.; Corley, B.; Prehn, J. H. M. The Amyloid Precursor Protein Intracellular Domain(AICD) Disrupts Actin Dynamics and Mitochondrial Bioenergetics. J. Neurochem. 2010, 113 (1), 275–284. https://doi.org/10.1111/j.1471-4159.2010.06615.x.

(35) Presenilin-dependent Intramembrane Proteolysis of CD44 Leads to the Liberation of Its Intracellular Domain and the Secretion of an Aβ-like Peptide* - Journal of Biological Chemistry https://www.jbc.org/article/S0021-9258(19)71566-X/fulltext (accessed 2021 -11 -14).

(36) APP and APLP2 interact with the synaptic release machinery and facilitate transmitter release at hippocampal synapses | eLife https://elifesciences.org/articles/09743 (accessed 2021 -11 -14).

(37) Dulin, F.; Léveillé, F.; Ortega, J. B.; Mornon, J.-P.; Buisson, A.; Callebaut, I.; Colloc’h, N. P3 Peptide, a Truncated Form of Aβ Devoid of Synaptotoxic Effect, Does Not Assemble into Soluble Oligomers. FEBS Lett. 2008, 582 (13), 1865–1870. https://doi.org/10.1016/j.febslet.2008.05.002.

(38) Polis, B.; Srikanth, K. D.; Elliott, E.; Gil-Henn, H.; Samson, A. O. L-Norvaline Reverses Cognitive Decline and Synaptic Loss in a Murine Model of Alzheimer’s Disease. Neurotherapeutics 2018, 15 (4), 1036–1054. https://doi.org/10.1007/s13311-018-0669-5.

(39) Affairs, ’Bruce Bruce Goldman Bruce Goldman is a science writer for the medical school’s Office of Communication & Public. Scientists reveal how beta-amyloid may cause Alzheimer’s http://med.stanford.edu/news/all-news/2013/09/scientists-reveal-how-beta-amyloid-may-cause-alzheimers.html (accessed 2021 -11 -27).

(40) Wei, W.; Norton, D. D.; Wang, X.; Kusiak, J. W. Abeta 17-42 in Alzheimer’s Disease Activates JNK and Caspase-8 Leading to Neuronal Apoptosis. Brain J. Neurol. 2002, 125 (Pt 9), 2036–2043. https://doi.org/10.1093/brain/awf205.

(41) Beta-Amyloid and the Amyloid Hypothesis. 4.

(42) Identification of β-Secretase (BACE1) Substrates Using Quantitative Proteomics https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2793532/ (accessed 2021 -11 -14).

(43) Ghosh, A. K.; Osswald, H. L. BACE1 (β-Secretase) Inhibitors for the Treatment of Alzheimer’s Disease. Chem. Soc. Rev. 2014, 43 (19), 6765–6813. https://doi.org/10.1039/c3cs60460h.

(44) Luo, Y.; Bolon, B.; Damore, M. A.; Fitzpatrick, D.; Liu, H.; Zhang, J.; Yan, Q.; Vassar, R.; Citron, M. BACE1 (β-Secretase) Knockout Mice Do Not Acquire Compensatory Gene Expression Changes or Develop Neural Lesions over Time. Neurobiol. Dis. 2003, 14 (1), 81–88. https://doi.org/10.1016/S0969-9961(03)00104-9.

(45) Kimura, A.; Hata, S.; Suzuki, T. Alternative Selection of β-Site APP-Cleaving Enzyme 1 (BACE1) Cleavage Sites in Amyloid β-Protein Precursor (APP) Harboring Protective and Pathogenic Mutations within the Aβ Sequence. J. Biol. Chem. 2016, 291 (46), 24041–24053. https://doi.org/10.1074/jbc.M116.744722.

(46) Beta Secretase - an overview | ScienceDirect Topics https://www.sciencedirect.com/topics/medicine-and-dentistry/beta-secretase (accessed 2021 -11 -28).

(47) Jeppsson, F.; Eketjäll, S.; Janson, J.; Karlström, S.; Gustavsson, S.; Olsson, L.-L.; Radesäter, A.-C.; Ploeger, B.; Cebers, G.; Kolmodin, K.; Swahn, B.-M.; von Berg, S.; Bueters, T.; Fälting, J. Discovery of AZD3839, a Potent and Selective BACE1 Inhibitor Clinical Candidate for the Treatment of Alzheimer Disease. J. Biol. Chem. 2012, 287 (49), 41245–41257. https://doi.org/10.1074/jbc.M112.409110.

(48) TNFRSF21 - Tumor necrosis factor receptor superfamily member 21 precursor - Homo sapiens (Human) - TNFRSF21 gene & protein https://www.uniprot.org/uniprot/O75509 (accessed 2021 -11 -14).

(49) Buxbaum, J. D.; Liu, K. N.; Luo, Y.; Slack, J. L.; Stocking, K. L.; Peschon, J. J.; Johnson, R. S.; Castner, B. J.; Cerretti, D. P.; Black, R. A. Evidence That Tumor Necrosis Factor Alpha Converting Enzyme Is Involved in Regulated Alpha-Secretase Cleavage of the Alzheimer Amyloid Protein Precursor. J. Biol. Chem. 1998, 273 (43), 27765–27767. https://doi.org/10.1074/jbc.273.43.27765.

(50) Bai, X.; Yan, C.; Yang, G.; Lu, P.; Ma, D.; Sun, L.; Zhou, R.; Scheres, S. H. W.; Shi, Y. An Atomic Structure of Human γ-Secretase. Nature 2015, 525 (7568), 212–217. https://doi.org/10.1038/nature14892.

(51) Ray, W. J.; Yao, M.; Mumm, J.; Schroeter, E. H.; Saftig, P.; Wolfe, M.; Selkoe, D. J.; Kopan, R.; Goate, A. M. Cell Surface Presenilin-1 Participates in the γ-Secretase-like Proteolysis of Notch *. J. Biol. Chem. 1999, 274 (51), 36801–36807. https://doi.org/10.1074/jbc.274.51.36801.

(52) Lu, P.; Bai, X.; Ma, D.; Xie, T.; Yan, C.; Sun, L.; Yang, G.; Zhao, Y.; Zhou, R.; Scheres, S. H. W.; Shi, Y. Three-Dimensional Structure of Human γ-Secretase. Nature 2014, 512 (7513), 166–170. https://doi.org/10.1038/nature13567.

(53) Kaether, C.; Haass, C.; Steiner, H. Assembly, Trafficking and Function of γ-Secretase. Neurodegener. Dis. 2006, 3 (4–5), 275–283. https://doi.org/10.1159/000095267.

(54) Crystal structure of the γ-secretase component nicastrin | PNAS https://www.pnas.org/content/111/37/13349 (accessed 2021 -11 -14).

(55) Sirour, C.; Hidalgo, M.; Bello, V.; Buisson, N.; Darribère, T.; Moreau, N. Dystroglycan Is Involved in Skin Morphogenesis Downstream of the Notch Signaling Pathway. Mol. Biol. Cell 2011, 22 (16), 2957–2969. https://doi.org/10.1091/mbc.E11-01-0074.

(56) Zlokovic, B. V.; Frangione, B. Transport-Clearance Hypothesis for Alzheimer’s Disease and Potential Therapeutic Implications; Landes Bioscience, 2013.

(57) Kuhn, A. J.; Raskatov, J. Is the P3 Peptide (Aβ17-40, Aβ17-42) Relevant to the Pathology of Alzheimer’s Disease?1. J. Alzheimers Dis. 2020, 74 (1), 43–53. https://doi.org/10.3233/jad-191201.

(58) Watanabe, N.; Tomita, T.; Sato, C.; Kitamura, T.; Morohashi, Y.; Iwatsubo, T. Pen-2 Is Incorporated into the γ-Secretase Complex through Binding to Transmembrane Domain 4 of Presenilin 1 *. J. Biol. Chem. 2005, 280 (51), 41967–41975. https://doi.org/10.1074/jbc.M509066200.

(59) Vestweber, D. VE-Cadherin: The Major Endothelial Adhesion Molecule Controlling Cellular Junctions and Blood Vessel Formation. Arterioscler. Thromb. Vasc. Biol. 2008, 28 (2), 223–232. https://doi.org/10.1161/ATVBAHA.107.158014.

(60) Branca, C.; Sarnico, I.; Ruotolo, R.; Lanzillotta, A.; Viscomi, A. R.; Benarese, M.; Porrini, V.; Lorenzini, L.; Calzà, L.; Imbimbo, B. P.; Ottonello, S.; Pizzi, M. Pharmacological Targeting of the β-Amyloid Precursor Protein Intracellular Domain. Sci. Rep. 2014, 4 (1), 4618. https://doi.org/10.1038/srep04618.

(61) Benseny-Cases, N.; Klementieva, O.; Cotte, M.; Ferrer, I.; Cladera, J. Microspectroscopy (ΜFTIR) Reveals Co-Localization of Lipid Oxidation and Amyloid Plaques in Human Alzheimer Disease Brains. Anal. Chem. 2014, 86 (24), 12047–12054. https://doi.org/10.1021/ac502667b.

(62) Bogoyevitch, M. A.; Boehm, I.; Oakley, A.; Ketterman, A. J.; Barr, R. K. Targeting the JNK MAPK Cascade for Inhibition: Basic Science and Therapeutic Potential. Biochim. Biophys. Acta BBA - Proteins Proteomics 2004, 1697 (1), 89–101. https://doi.org/10.1016/j.bbapap.2003.11.016.

(63) A new Alzheimer’s drug has been approved. But should you take it? - Harvard Health https://www.health.harvard.edu/blog/a-new-alzheimers-drug-has-been-approved-but-should-you-take-it-202106082483 (accessed 2021 -11 -14).

(64) Sobhanifar, S.; Schneider, B.; Löhr, F.; Gottstein, D.; Ikeya, T.; Mlynarczyk, K.; Pulawski, W.; Ghoshdastider, U.; Kolinski, M.; Filipek, S.; Güntert, P.; Bernhard, F.; Dötsch, V. Structural Investigation of the C-Terminal Catalytic Fragment of Presenilin 1. Proc. Natl. Acad. Sci. U. S. A. 2010, 107 (21), 9644–9649. https://doi.org/10.1073/pnas.1000778107.

(65) Aducanumab Approved for Treatment of Alzheimer’s Disease https://alz.org/alzheimers-dementia/treatments/aducanumab (accessed 2021 -11 -30).

Published

03-13-2023

How to Cite

Magee, T., & Zubarev, Y. . (2023). Different Therapeutic Approaches to Alzheimer’s Disease. Journal of Student Research, 11(1). https://doi.org/10.47611/jsrhs.v11i1.2493

Issue

Section

HS Review Articles