A Brief Overview of Pathological Tau and Inhibitors and Modifiers of Tau Aggregation for Treatment of Tauopathies
DOI:
https://doi.org/10.47611/jsrhs.v10i4.2468Keywords:
tauopathies, tauopathy, therapeutics, overview, pathological tau, Alzheimer's, tau aggregation, inhibitors, phosphorylated tau, treatment, modifiers, neurodegenerative, tau, tau inhibition, tau degradation, tau therapeuticsAbstract
Tauopathies make up a significant portion of neurodegenerative diseases, affecting tens of millions of people. Tauopathies are defined by abnormal tau protein aggregation. Current approaches to tauopathy inhibition and therapeutic development require an in-depth understanding of post-translational modifications and propagation of pathological tau. Research thus far has produced a variety of inhibiting and mitigating compounds to alleviate tau aggregation. These compounds employ distinct mechanisms, including: kinase-, enzyme-, and secretion-inhibition, direct aggregation inhibition, and upregulation of cellular degradation systems. Overall, the current progress and ongoing research in the development of tauopathy therapeutics has potential, while also highlighting some crucial unknowns in the field that warrant further investigation.
Downloads
References or Bibliography
Chang, H. Y., Sang, T. K., & Chiang, A. S. (2018). Untangling the Tauopathy for Alzheimer’s disease and parkinsonism. Journal of Biomedical Science, 25(1). https://doi.org/10.1186/s12929-018-0457-x.
Kovacs, G. G. (2018). Tauopathies. Handbook of Clinical Neurology, 145, 355–368. https://doi.org/10.1016/b978-0-12-802395-2.00025-0
Irwin, D. J. (2016). Tauopathies as clinicopathological entities. Parkinsonism & Related Disorders, 22, S29–S33. https://doi.org/10.1016/j.parkreldis.2015.09.020
Orr, M. E., Sullivan, A. C., & Frost, B. (2017). A Brief Overview of Tauopathy: Causes, Consequences, and Therapeutic Strategies. Trends in Pharmacological Sciences, 38(7), 637–648. https://doi.org/10.1016/j.tips.2017.03.011
Gao, Y. L., Wang, N., Sun, F. R., Cao, X. P., Zhang, W., & Yu, J. T. (2018). Tau in neurodegenerative disease. Annals of Translational Medicine, 6(10), 175. https://doi.org/10.21037/atm.2018.04.23
Martin, L., Latypova, X., & Terro, F. (2011). Post-translational modifications of tau protein: Implications for Alzheimer’s disease. Neurochemistry International, 58(4), 458–471. https://doi.org/10.1016/j.neuint.2010.12.023
Correia, S. C., Perry, G., & Moreira, P. I. (2016). Mitochondrial traffic jams in Alzheimer’s disease - pinpointing the roadblocks. Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease, 1862(10), 1909–1917. https://doi.org/10.1016/j.bbadis.2016.07.010
Leyns, C. E. G., & Holtzman, D. M. (2017). Glial contributions to neurodegeneration in tauopathies. Molecular Neurodegeneration, 12(1). https://doi.org/10.1186/s13024-017-0192-x
Despres, C., Byrne, C., Qi, H., Cantrelle, F. X., Huvent, I., Chambraud, B., Baulieu, E. E., Jacquot, Y., Landrieu, I., Lippens, G., & Smet-Nocca, C. (2017). Identification of the Tau phosphorylation pattern that drives its aggregation. Proceedings of the National Academy of Sciences, 114(34), 9080–9085. https://doi.org/10.1073/pnas.1708448114
Goedert, M., & Spillantini, M. G. (2017). Propagation of Tau aggregates. Molecular Brain, 10(1). https://doi.org/10.1186/s13041-017-0298-7
Brunello, C. A., Merezhko, M., Uronen, R. L., & Huttunen, H. J. (2019). Mechanisms of secretion and spreading of pathological tau protein. Cellular and Molecular Life Sciences, 77(9), 1721–1744. https://doi.org/10.1007/s00018-019-03349-1
Green, C. W., Reid, D. H., McCarn, J. E., Schepis, M. M., Phillips, J. F., & Parsons, M. B. (1986). Naturalistic observations of classrooms serving severely handicapped persons: Establishing evaluative norms. Applied Research in Mental Retardation, 7(1), 37–50. https://doi.org/10.1016/0270-3092(86)90016-0
Falcon, B., Cavallini, A., Angers, R., Glover, S., Murray, T. K., Barnham, L., Jackson, S., O’Neill, M. J., Isaacs, A. M., Hutton, M. L., Szekeres, P. G., Goedert, M., & Bose, S. (2015). Conformation Determines the Seeding Potencies of Native and Recombinant Tau Aggregates. Journal of Biological Chemistry, 290(2), 1049–1065. https://doi.org/10.1074/jbc.m114.589309
Saman, S., Kim, W., Raya, M., Visnick, Y., Miro, S., Saman, S., Jackson, B., McKee, A. C., Alvarez, V. E., Lee, N. C., & Hall, G. F. (2012). Exosome-associated Tau Is Secreted in Tauopathy Models and Is Selectively Phosphorylated in Cerebrospinal Fluid in Early Alzheimer Disease. Journal of Biological Chemistry, 287(6), 3842–3849. https://doi.org/10.1074/jbc.m111.277061
Polanco, J. C., Scicluna, B. J., Hill, A. F., & Götz, J. (2016). Extracellular Vesicles Isolated from the Brains of rTg4510 Mice Seed Tau Protein Aggregation in a Threshold-dependent Manner. Journal of Biological Chemistry, 291(24), 12445–12466. https://doi.org/10.1074/jbc.m115.709485
Baker, S., Polanco, J. C., & Götz, J. (2016). Extracellular Vesicles Containing P301L Mutant Tau Accelerate Pathological Tau Phosphorylation and Oligomer Formation but Do Not Seed Mature Neurofibrillary Tangles in ALZ17 Mice. Journal of Alzheimer’s Disease, 54(3), 1207–1217. https://doi.org/10.3233/jad-160371
Holmes, B. B., DeVos, S. L., Kfoury, N., Li, M., Jacks, R., Yanamandra, K., Ouidja, M. O., Brodsky, F. M., Marasa, J., Bagchi, D. P., Kotzbauer, P. T., Miller, T. M., Papy-Garcia, D., & Diamond, M. I. (2013). Heparan sulfate proteoglycans mediate internalization and propagation of specific proteopathic seeds. Proceedings of the National Academy of Sciences, 110(33), E3138–E3147. https://doi.org/10.1073/pnas.1301440110
Brunello, C. A., Yan, X., & Huttunen, H. J. (2016). Internalized Tau sensitizes cells to stress by promoting formation and stability of stress granules. Scientific Reports, 6(1). https://doi.org/10.1038/srep30498
Liu, M., Dexheimer, T., Sui, D., Hovde, S., Deng, X., Kwok, R., Bochar, D. A., & Kuo, M. H. (2020). Hyperphosphorylated tau aggregation and cytotoxicity modulators screen identified prescription drugs linked to Alzheimer’s disease and cognitive functions. Scientific Reports, 10(1). https://doi.org/10.1038/s41598-020-73680-2
Liu, M., Sui, D., Dexheimer, T., Hovde, S., Deng, X., Wang, K. W., Lin, H. L., Chien, H. T., Kweon, H. K., Kuo, N. S., Ayoub, C. A., Jimenez-Harrison, D., Andrews, P. C., Kwok, R., Bochar, D. A., Kuret, J., Fortin, J., Tsay, Y. G., & Kuo, M. H. (2020). Hyperphosphorylation Renders Tau Prone to Aggregate and to Cause Cell Death. Molecular Neurobiology, 57(11), 4704–4719. https://doi.org/10.1007/s12035-020-02034-w
Coutadeur, S., Benyamine, H., Delalonde, L., de Oliveira, C., Leblond, B., Foucourt, A., Besson, T., Casagrande, A. S., Taverne, T., Girard, A., Pando, M. P., & Désiré, L. (2015). A novel DYRK1A (Dual specificity tyrosine phosphorylation-regulated kinase 1A) inhibitor for the treatment of Alzheimer’s disease: effect on Tau and amyloid pathologies in vitro. Journal of Neurochemistry, 133(3), 440–451. https://doi.org/10.1111/jnc.13018
Kimura, R., Kamino, K., Yamamoto, M., Nuripa, A., Kida, T., Kazui, H., Hashimoto, R., Tanaka, T., Kudo, T., Yamagata, H., Tabara, Y., Miki, T., Akatsu, H., Kosaka, K., Funakoshi, E., Nishitomi, K., Sakaguchi, G., Kato, A., Hattori, H., . . . Takeda, M. (2006). The DYRK1A gene, encoded in chromosome 21 Down syndrome critical region, bridges between β-amyloid production and tau phosphorylation in Alzheimer disease. Human Molecular Genetics, 16(1), 15–23. https://doi.org/10.1093/hmg/ddl437
Woods, Y. L., Cohen, P., Becker, W., Jakes, R., Goedert, M., Wang, X., & Pround, C. G. (2001). The kinase DYRK phosphorylates protein-synthesis initiation factor eIF2Bɛ at Ser539 and the microtubule-associated protein tau at Thr212: potential role for DYRK as a glycogen synthase kinase 3-priming kinase. Biochemical Journal, 355(3), 609–615. https://doi.org/10.1042/bj3550609
Azorsa, D. O., Robeson, R. H., Frost, D., Hoovet, B. M., Brautigam, G. R., Dickey, C., Beaudry, C., Basu, G. D., Holz, D. R., Hernandez, J. A., Bisanz, K. M., Gwinn, L., Grover, A., Rogers, J., Reiman, E. M., Hutton, M., Stephan, D. A., Mousses, S., & Dunckley, T. (2010). High-content siRNA screening of the kinome identifies kinases involved in Alzheimer’s disease-related tau hyperphosphorylation. BMC Genomics, 11(1). https://doi.org/10.1186/1471-2164-11-25
Ruan, Z., Delpech, J. C., Venkatesan Kalavai, S., van Enoo, A. A., Hu, J., Ikezu, S., & Ikezu, T. (2020). P2RX7 inhibitor suppresses exosome secretion and disease phenotype in P301S tau transgenic mice. Molecular Neurodegeneration, 15(1). https://doi.org/10.1186/s13024-020-00396-2
GlaxoSmithKline. (2009, February 23 - 2017, July 7). First Time in Human Study Evaluating the Safety, Tolerability, Pharmacokinetics, Pharmacodynamics and the Effect of Food of Single Assending Doses of GSK1482160. Identifier NCT00849134. clinicaltrials.gov/ct2/show/NCT00849134
Okuda, M., Hijikuro, I., Fujita, Y., Wu, X., Nakayama, S., Sakata, Y., Noguchi, Y., Ogo, M., Akasofu, S., Ito, Y., Soeda, Y., Tsuchiya, N., Tanaka, N., Takahashi, T., & Sugimoto, H. (2015). PE859, a Novel Tau Aggregation Inhibitor, Reduces Aggregated Tau and Prevents Onset and Progression of Neural Dysfunction In Vivo. PLOS ONE, 10(2), e0117511. https://doi.org/10.1371/journal.pone.0117511
Diner, I., Nguyen, T., & Seyfried, N. T. (2017). Enrichment of Detergent-insoluble Protein Aggregates from Human Postmortem Brain. Journal of Visualized Experiments, 128. https://doi.org/10.3791/55835
Dantuma, N. P., & Bott, L. C. (2014). The ubiquitin-proteasome system in neurodegenerative diseases: precipitating factor, yet part of the solution. Frontiers in Molecular Neuroscience, 7. https://doi.org/10.3389/fnmol.2014.00070
Lee, J. H., Shin, S. K., Jiang, Y., Choi, W. H., Hong, C., Kim, D. E., & Lee, M. J. (2015). Facilitated Tau Degradation by USP14 Aptamers via Enhanced Proteasome Activity. Scientific Reports, 5(1). https://doi.org/10.1038/srep10757
Boselli, M., Lee, B. H., Robert, J., Prado, M. A., Min, S. W., Cheng, C., Silva, M. C., Seong, C., Elsasser, S., Hatle, K. M., Gahman, T. C., Gygi, S. P., Haggarty, S. J., Gan, L., King, R. W., & Finley, D. (2017). An inhibitor of the proteasomal deubiquitinating enzyme USP14 induces tau elimination in cultured neurons. Journal of Biological Chemistry, 292(47), 19209–19225. https://doi.org/10.1074/jbc.m117.815126
Xu, D., Shan, B., Sun, H., Xiao, J., Zhu, K., Xie, X., Li, X., Liang, W., Lu, X., Qian, L., & Yuan, J. (2016). USP14 regulates autophagy by suppressing K63 ubiquitination of Beclin 1. Genes & Development, 30(15), 1718–1730. https://doi.org/10.1101/gad.285122.116
Finkbeiner, S. (2019). The Autophagy Lysosomal Pathway and Neurodegeneration. Cold Spring Harbor Perspectives in Biology, 12(3), a033993. https://doi.org/10.1101/cshperspect.a033993
Kim, Y. C., & Guan, K. L. (2015). mTOR: a pharmacologic target for autophagy regulation. Journal of Clinical Investigation, 125(1), 25–32. https://doi.org/10.1172/jci73939
Ozcelik, S., Fraser, G., Castets, P., Schaeffer, V., Skachokova, Z., Breu, K., Clavaguera, F., Sinnreich, M., Kappos, L., Goedert, M., Tolnay, M., & Winkler, D. T. (2013). Rapamycin Attenuates the Progression of Tau Pathology in P301S Tau Transgenic Mice. PLoS ONE, 8(5), e62459. https://doi.org/10.1371/journal.pone.0062459
Seshadri, S. J., & Gonzales, M. J. (2020, November 16 - ). Rapamycin - Effects on Alzheimer's and Cognitive Health Rapamycin - Effects on Alzheimer's and Cognitive Health (REACH). Identifier NCT04629495. clinicaltrials.gov/ct2/show/NCT04629495.
Silva, M. C., Nandi, G. A., Tentarelli, S., Gurrell, I. K., Jamier, T., Lucente, D., Dickerson, B. C., Brown, D. G., Brandon, N. J., & Haggarty, S. J. (2020). Prolonged tau clearance and stress vulnerability rescue by pharmacological activation of autophagy in tauopathy neurons. Nature Communications, 11(1). https://doi.org/10.1038/s41467-020-16984-1
Congdon, E. E., Wu, J. W., Myeku, N., Figueroa, Y. H., Herman, M., Marinec, P. S., Gestwicki, J. E., Dickey, C. A., Yu, W. H., & Duff, K. E. (2012). Methylthioninium chloride (methylene blue) induces autophagy and attenuates tauopathy in vitro and in vivo. Autophagy, 8(4), 609–622. https://doi.org/10.4161/auto.19048
Bjørkøy, G., Lamark, T., Pankiv, S., ØVervatn, A., Brech, A., & Johansen, T. (2009). Chapter 12 Monitoring Autophagic Degradation of p62/SQSTM1. Methods in Enzymology, 181–197. https://doi.org/10.1016/s0076-6879(08)03612-4
Di, Y. Q., Han, X. L., Kang, X. L., Wang, D., Chen, C. H., Wang, J. X., & Zhao, X. F. (2020). Autophagy triggers CTSD (cathepsin D) maturation and localization inside cells to promote apoptosis. Autophagy, 17(5), 1170–1192. https://doi.org/10.1080/15548627.2020.1752497
Stack, C., Jainuddin, S., Elipenahli, C., Gerges, M., Starkova, N., Starkov, A. A., Jové, M., Portero-Otin, M., Launay, N., Pujol, A., Kaidery, N. A., Thomas, B., Tampellini, D., Beal, M. F., & Dumont, M. (2014). Methylene blue upregulates Nrf2/ARE genes and prevents tau-related neurotoxicity. Human Molecular Genetics, 23(14), 3716–3732. https://doi.org/10.1093/hmg/ddu080
Hochgräfe, K., Sydow, A., Matenia, D., Cadinu, D., Könen, S., Petrova, O., Pickhardt, M., Goll, P., Morellini, F., Mandelkow, E., & Mandelkow, E. M. (2015). Preventive methylene blue treatment preserves cognition in mice expressing full-length pro-aggregant human Tau. Acta Neuropathologica Communications, 3(1). https://doi.org/10.1186/s40478-015-0204-4
National Library of Medicine (U. S.). (2012, September 21 - 2018, March 14). Safety and Efficacy Study Evaluating TRx0237 in Subjects With Mild to Moderate Alzheimer's Disease. Identifier NCT01689246. clinicaltrials.gov/ct2/show/study/NCT01689246.
Soeda, Y., Saito, M., Maeda, S., Ishida, K., Nakamura, A., Kojima, S., & Takashima, A. (2019). Methylene Blue Inhibits Formation of Tau Fibrils but not of Granular Tau Oligomers: A Plausible Key to Understanding Failure of a Clinical Trial for Alzheimer’s Disease. Journal of Alzheimer’s Disease, 68(4), 1677–1686. https://doi.org/10.3233/jad-181001
Soeda, Y., Yoshikawa, M., Almeida, O. F. X., Sumioka, A., Maeda, S., Osada, H., Kondoh, Y., Saito, A., Miyasaka, T., Kimura, T., Suzuki, M., Koyama, H., Yoshiike, Y., Sugimoto, H., Ihara, Y., & Takashima, A. (2015). Toxic tau oligomer formation blocked by capping of cysteine residues with 1,2-dihydroxybenzene groups. Nature Communications, 6(1). https://doi.org/10.1038/ncomms10216
Published
How to Cite
Issue
Section
Copyright (c) 2021 Siri Sahithi Manthapuri; Emily Davis
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Copyright holder(s) granted JSR a perpetual, non-exclusive license to distriute & display this article.