Exploring Potential Mechanisms by which Early Life Stress Impairs Adult Hippocampal Neurogenesis
DOI:
https://doi.org/10.47611/jsrhs.v11i1.2435Keywords:
Early life stress, Adult hippocampal neurogenesis, Telomeres, Telomerase, DNA MethylationAbstract
Prolonged stressful experiences prior to adolescence have been linked to an increased risk of a multitude of neurological disorders, from depression and anxiety to schizophrenia and bipolar disorder. In particular, early life stress (ELS) has been shown to significantly impair adult hippocampal neurogenesis (AHN). While the long-term effects of early life stress are well studied, the underlying mechanisms through which ELS impairs AHN are still largely unknown. This paper reviews the current literature surrounding early life stress and AHN and discusses potential mediators that impact AHN during ELS including changes in telomere length, alterations in telomerase activity, and dysregulation of DNA methylation.
Downloads
References or Bibliography
Heim, C., Shugart, M., Craighead, W., & Nemeroff, C. (2010). Neurobiological and psychiatric consequences of child abuse and neglect. Developmental Psychobiology, 52(7), 671-690. doi: 10.1002/dev.20494.
(2021). Retrieved 29 November 2021, from https://www.biorxiv.org/content/10.1101/417832v1.full.pdf
Li M, D'Arcy C, Meng X (2016): Maltreatment in childhood substantially increases the risk of adult depression and anxiety in prospective cohort studies: systematic review, meta-analysis, and proportional attributable fractions. Psychol Med. 46:717- 730.
Establishing a Link Between Attention Deficit Disorder/Attention Deficit Hyperactivity Disorder and Childhood Physical Abuse. (2021). Journal Of Aggression, Maltreatment & Trauma. Retrieved from https://www.tandfonline.com/doi/abs/10.1080/10926771.2014.873510
Sapolsky, R., Krey, L., & McEwen, B. (1984). Glucocorticoid-sensitive hippocampal neurons are involved in terminating the adrenocortical stress response. Proceedings Of The National Academy Of Sciences, 81(19), 6174-6177. doi: 10.1073/pnas.81.19.6174
Jankord, R., & Herman, J. (2008). Limbic Regulation of Hypothalamo-Pituitary-Adrenocortical Function during Acute and Chronic Stress. Annals Of The New York Academy Of Sciences, 1148(1), 64-73. doi: 10.1196/annals.1410.012
(2021). Retrieved 22 August 2021, from https://www.jneurosci.org/content/jneuro/22/3/635.full.pdf
Calem, M., Bromis, K., McGuire, P., Morgan, C., & Kempton, M. (2017). Meta-analysis of associations between childhood adversity and hippocampus and amygdala volume in non-clinical and general population samples. Neuroimage: Clinical, 14, 471-479. doi: 10.1016/j.nicl.2017.02.016
Brydges, N., Moon, A., Rule, L., Watkin, H., Thomas, K., & Hall, J. (2018). Sex specific effects of pre-pubertal stress on hippocampal neurogenesis and behaviour. Translational Psychiatry, 8(1). doi: 10.1038/s41398-018-0322-4
Functions and Dysfunctions of Adult Hippocampal Neurogenesis. (2021). Retrieved 23 August 2021, from https://www.annualreviews.org/doi/abs/10.1146/annurev-neuro-071013-014134
Tyrka, A., Price, L., Kao, H., Porton, B., Marsella, S., & Carpenter, L. (2010). Childhood Maltreatment and Telomere Shortening: Preliminary Support for an Effect of Early Stress on Cellular Aging. Biological Psychiatry, 67(6), 531-534. doi: 10.1016/j.biopsych.2009.08.014
van Steensel B, Smogorzewska A & de Lange T (1998) TRF2 protects human telomeres from end-to-end fusions. Cell 92: 401–413 https://doi.org/10.1016/S0092-8674(00)80932-0
de Lange T (2005) Shelterin: the protein complex that shapes and safeguards human telomeres. Genes Dev. 19: 2100–2110 https://doi.org/10.1101/gad.1346005
Flores, I., & Blasco, M. (2010). The role of telomeres and telomerase in stem cell aging. FEBS Letters, 584(17), 3826-3830. doi: 10.1016/j.febslet.2010.07.042
Lu, C., Fu, W., & Mattson, M. (2001). Telomerase protects developing neurons against DNA damage-induced cell death. Developmental Brain Research, 131(1-2), 167-171. doi: 10.1016/s0165-3806(01)00237-1
Moore, L., Le, T., & Fan, G. (2012). DNA Methylation and Its Basic Function. Neuropsychopharmacology, 38(1), 23-38. doi: 10.1038/npp.2012.112
Shen L, Kondo Y, Guo Y, Zhang J, Zhang L, Ahmed S et al (2007). Genome-wide profiling of DNA methylation reveals a class of normally methylated CpG island promoters. PLoS Genet 3: 2023–2036.
Meissner A, Mikkelsen TS, Gu H, Wernig M, Hanna J, Sivachenko A et al (2008). Genome-scale DNA methylation maps of pluripotent and differentiated cells. Nature 454: 766–770.
Jobe, E., & Zhao, X. (2017). DNA Methylation and Adult Neurogenesis. Brain Plasticity, 3(1), 5-26. doi: 10.3233/bpl-160034
Tyrka, A., Price, L., Kao, H., Porton, B., Marsella, S., & Carpenter, L. (2010). Childhood Maltreatment and Telomere Shortening: Preliminary Support for an Effect of Early Stress on Cellular Aging. Biological Psychiatry, 67(6), 531-534. doi: 10.1016/j.biopsych.2009.08.014
Schneper, L., Brooks-Gunn, J., Notterman, D., & Suomi, S. (2016). Early-Life Experiences and Telomere Length in Adult Rhesus Monkeys: An Exploratory Study. Psychosomatic Medicine,78(9),1066-1071.doi: 10.1097/psy.0000000000000402
Understanding the stress response - Harvard Health. (2011). Retrieved 7 October 2021, from https://www.health.harvard.edu/staying-healthy/understanding-the-stress-response
Epel, E., Lin, J., Dhabhar, F., Wolkowitz, O., Puterman, E., Karan, L., & Blackburn, E. (2010). Dynamics of telomerase activity in response to acute psychological stress. Brain, Behavior, And Immunity, 24(4), 531-539. doi: 10.1016/j.bbi.2009.11.018
Lin, J., Epel, E., & Blackburn, E. (2012). Telomeres and lifestyle factors: Roles in cellular aging. Mutation Research/Fundamental And Molecular Mechanisms Of Mutagenesis, 730(1-2), 85-89. doi: 10.1016/j.mrfmmm.2011.08.003
Damjanovic, A., Yang, Y., Glaser, R., Kiecolt-Glaser, J., Nguyen, H., & Laskowski, B. et al. (2007). Accelerated Telomere Erosion Is Associated with a Declining Immune Function of Caregivers of Alzheimer’s Disease Patients. The Journal Of Immunology, 179(6), 4249-4254. doi: 10.4049/jimmunol.179.6.4249
Schutte, N., & Malouff, J. (2014). A meta-analytic review of the effects of mindfulness meditation on telomerase activity. Psychoneuroendocrinology,42,45-48. doi: 10.1016/j.psyneuen.2013.12.017
Epel, E., Blackburn, E., Lin, J., Dhabhar, F., Adler, N., Morrow, J., & Cawthon, R. (2004). Accelerated telomere shortening in response to life stress. Proceedings Of The National Academy Of Sciences,101(49),17312-17315. doi: 10.1073/pnas.0407162101
Daubenmier, J., Lin, J., Blackburn, E., Hecht, F., Kristeller, J., & Maninger, N. et al. (2012). Changes in stress, eating, and metabolic factors are related to changes in telomerase activity in a randomized mindfulness intervention pilot study. Psychoneuroendocrinology, 37(7), 917-928. doi: 10.1016/j.psyneuen.2011.10.008
Ostenfeld T, Caldwell MA, Prowse KR, Linskens MH, Jauniaux E, Svendsen CN (2000) Human neural precursor cells express low levels of telomerase in vitro and show diminishing cell proliferation with extensive axonal outgrowth following transplantation
Klapper W, Shin T, Mattson MP (2001) Differential regulation of telomerase activity and TERT expression during brain development in mice. J Neurosci Res 64:252–260
Fu, W., Lu, C., & Mattson, M. (2002). Telomerase Mediates the Cell Survival-Promoting Actions of Brain-Derived Neurotrophic Factor and Secreted Amyloid Precursor Protein in Developing Hippocampal Neurons. The Journal Of Neuroscience, 22(24), 10710-10719. doi: 10.1523/jneurosci.22-24-10710.2002
Fu W, Killen M, Pandita T, Mattson MP (2000) The catalytic subunit of telomerase is expressed in developing brain neurons and serves a cell survival-promoting function. J Mol Neurosci 14:3–15
Waterhouse, E. G. et al. BDNF promotes differentiation and maturation of adult-born neurons through GABAergic transmission. J Neurosci 32, 14318–14330 (2012).
Chan, J. P., Cordeira, J., Calderon, G. A., Iyer, L. K. & Rios, M. Depletion of central BDNF in mice impedes terminal differentiation of new granule neurons in the adult hippocampus. Mol Cell Neurosci 39, 372–383 (2008).
(2021). Retrieved 8 September 2021, from http://ir.nsfc.gov.cn/paperDownload/1000014388547.pdf
Beal, M. (1992). Mechanisms of excitotoxicity in neurologic diseases. The FASEB Journal, 6(15), 3338-3344. doi: 10.1096/fasebj.6.15.1464368
Fryer, H., Knox, R., Strittmatter, S., & Kalb, R. (1999). Excitotoxic Death of a Subset of Embryonic Rat Motor Neurons In Vitro. Journal Of Neurochemistry, 72(2), 500-513. doi: 10.1046/j.1471-4159.1999.0720500.x
Lyko, F. (2017). The DNA methyltransferase family: a versatile toolkit for epigenetic regulation. Nature Reviews Genetics, 19(2), 81-92. doi: 10.1038/nrg.2017.80
Feng J, Chang H, Li E, Fan G. 2005. Dynamic expression of de novo DNA methyltransferases Dnmt3a and Dnmt3b in the central nervous system. J Neurosci Res 79:734–746.
Wu, Z., Huang, K., Yu, J., Le, T., Namihira, M., & Liu, Y. et al. (2012). Dnmt3a regulates both proliferation and differentiation of mouse neural stem cells. Journal Of Neuroscience Research, 90(10), 1883-1891. doi: 10.1002/jnr.23077
Feng, J., Zhou, Y., Campbell, S., Le, T., Li, E., & Sweatt, J. et al. (2010). Dnmt1 and Dnmt3a maintain DNA methylation and regulate synaptic function in adult forebrain neurons. Nature Neuroscience, 13(4), 423-430. doi: 10.1038/nn.2514
Anier, K., Malinovskaja, K., Pruus, K., Aonurm-Helm, A., Zharkovsky, A., & Kalda, A. (2014). Maternal separation is associated with DNA methylation and behavioural changes in adult rats. European Neuropsychopharmacology, 24(3), 459-468. doi: 10.1016/j.euroneuro.2013.07.012
Urb, M., Anier, K., Matsalu, T., Aonurm-Helm, A., Tasa, G., & Koppel, I. et al. (2019). Glucocorticoid Receptor Stimulation Resulting from Early Life Stress Affects Expression of DNA Methyltransferases in Rat Prefrontal Cortex. Journal Of Molecular Neuroscience, 68(1), 99-110. doi: 10.1007/s12031-019-01286-z
Wu, X., & Zhang, Y. (2017). TET-mediated active DNA demethylation: mechanism, function and beyond. Nature Reviews Genetics, 18(9), 517-534. doi: 10.1038/nrg.2017.33
López-Moyado, I., Tsagaratou, A., Yuita, H., Seo, H., Delatte, B., & Heinz, S. et al. (2019). Paradoxical association of TET loss of function with genome-wide DNA hypomethylation. Proceedings Of The National Academy Of Sciences, 116(34), 16933-16942. doi: 10.1073/pnas.1903059116
Mohr, F., Döhner, K., Buske, C., & Rawat, V. (2011). TET Genes: new players in DNA demethylation and important determinants for stemness. Experimental Hematology, 39(3), 272-281. doi: 10.1016/j.exphem.2010.12.004
Zhang, R., Cui, Q., Murai, K., Lim, Y., Smith, Z., & Jin, S. et al. (2013). Tet1 Regulates Adult Hippocampal Neurogenesis and Cognition. Cell Stem Cell, 13(2), 237-245. doi: 10.1016/j.stem.2013.05.006
Wu, H., D’Alessio, A., Ito, S., Xia, K., Wang, Z., & Cui, K. et al. (2011). Dual functions of Tet1 in transcriptional regulation in mouse embryonic stem cells. Nature, 473(7347), 389-393. doi: 10.1038/nature09934
Rosenberg, T., Kisliouk, T., Cramer, T., Shinder, D., Druyan, S., & Meiri, N. (2020). Embryonic Heat Conditioning Induces TET-Dependent Cross-Tolerance to Hypothalamic Inflammation Later in Life. Frontiers In Genetics, 11. doi: 10.3389/fgene.2020.00767
Massart, R., Suderman, M., Provencal, N., Yi, C., Bennett, A., Suomi, S., & Szyf, M. (2014). Hydroxymethylation and DNA methylation profiles in the prefrontal cortex of the non-human primate rhesus macaque and the impact of maternal deprivation on hydroxymethylation. Neuroscience, 268, 139-148. doi: 10.1016/j.neuroscience.2014.03.021
Yao, B., Christian, K., He, C., Jin, P., Ming, G., & Song, H. (2016). Epigenetic mechanisms in neurogenesis. Nature Reviews Neuroscience, 17(9), 537-549. doi: 10.1038/nrn.2016.70
Fogelman, N., & Canli, T. (2019). Early Life Stress, Physiology, and Genetics: A Review. Frontiers In Psychology, 10. doi: 10.3389/fpsyg.2019.01668
Harlow, H., Dodsworth, R., & Harlow, M. (1965). Total social isolation in monkeys. Proceedings Of The National Academy Of Sciences, 54(1), 90-97. doi: 10.1073/pnas.54.1.90
Estrogen's Effects on the Female Body. (2021). Retrieved 8 October 2021, from https://www.hopkinsmedicine.org/health/conditions-and-diseases/estrogens-effects-on-the-female-body
Stirone, C., Duckles, S., Krause, D., & Procaccio, V. (2005). Estrogen Increases Mitochondrial Efficiency and Reduces Oxidative Stress in Cerebral Blood Vessels. Molecular Pharmacology, 68(4), 959-965. doi: 10.1124/mol.105.014662
Jobe, E., & Zhao, X. (2017). DNA Methylation and Adult Neurogenesis. Brain Plasticity, 3(1), 5-26. doi: 10.3233/bpl-160034
Stirone, C., Duckles, S., Krause, D., & Procaccio, V. (2005). Estrogen Increases Mitochondrial Efficiency and Reduces Oxidative Stress in Cerebral Blood Vessels. Molecular Pharmacology, 68(4), 959-965. doi: 10.1124/mol.105.014662
Feagin, Joe R., and Steve Rutter. Systemic Racism: A Theory of Oppression. Routledge, 2006
Racism and Health I: Pathways and Scientific Evidence - David R. Williams, Selina A. Mohammed, 2013. (2021). American Behavioral Scientist. Retrieved from https://journals.sagepub.com/doi/abs/10.1177/0002764213487340
Chang, S., Walker, S., Grantham-McGregor, S., & Powell, C. (2002). Early childhood stunting and later behavior and school achievement. Journal Of Child Psychology And Psychiatry, 43(6), 775-783. doi: 10.1111/1469-7610.00088
Gottlieb, T., & Oren, M. (1998). p53 and apoptosis. Seminars In Cancer Biology, 8(5), 359-368. doi: 10.1006/scbi.1998.0098
Published
How to Cite
Issue
Section
Copyright (c) 2022 Ananya Bhatt; Nicole Katchur
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Copyright holder(s) granted JSR a perpetual, non-exclusive license to distriute & display this article.