Exploring the Hidden Potential of Bacteriophages 3-Part Miniseries

Authors

  • Nika Ilieva Bath Academy
  • Anthony Nemecek Bath Academy

DOI:

https://doi.org/10.47611/jsrhs.v11i1.2386

Keywords:

Bacteriophages, Bacteria, Bacterial infections, Virology, Biology, Agriculture, Ecology, Medicine, Health

Abstract

Bacteriophages are viruses that specifically infect bacteria. They can be found everywhere: in the oceans, on plants, and within the human microbiome. Bacteriophage fall into two categories: lytic and lysogenic. Lytic phages have been used for the treatment of various bacterial infections. Lysogenic phages have the potential to act as a vector for bacterial genetic manipulation through the introduction of key genes via horizontal gene transfer. This process would result in the introduction of engineered genetic material to bacterial hosts, for instance to change the behavior of gut bacteria without impacting the human host or requiring complex procedures. Therefore, bacteriophage could be used for the targeted treatment of a multitude of complex diseases, including antibiotic-resistant bacterial infections, sexually transmitted infections, bacterial dysbiosis, cancer treatment, and potentially hormone/ metabolite replacement therapy. Similarly, bacteriophages are in use for the prevention and eradication of agricultural pests and offer relief from antibiotic overuse by the meat industry. These organisms could even be used to stave off parasite-induced honeybee colony collapse. Indeed, genetic manipulations of bacteriophage could be employed as a novel method to increase oceanic carbon capture, methane fixation, and plastic degradation to reduce the levels of pollution contributing to environmental toxicity and climate change. This three-part mini review series highlights phage biological processes and the correlated potential areas of application, making an argument for an increase in phage research while presenting the field’s current limitations and the future of innovative solutions for some of the most pressing problems of the 21st century.

Downloads

Download data is not yet available.

References or Bibliography

Antibiotic-resistant gonorrhoea on the rise, new drugs needed. (2017, July 7). World Health Organization. https://www.who.int/news/item/07-07-2017-antibiotic-resistant-gonorrhoea-on-the-rise-new-drugs-needed

Bradde, Serena, et al. “The Size of the Immune Repertoire of Bacteria.” PNAS, National Academy of Sciences, 10 Mar. 2020, https://www.pnas.org/content/117/10/5144.

Bennett K. (2019, August 22) Moving away from antibiotics in animal agriculture. Scientific American Blog Network. https://blogs.scientificamerican.com/observations/moving-away-from-antibiotics-in-animal-agriculture/.

Buttimer, C. (2017, January 20). Bacteriophages and Bacterial Plant Diseases. Frontiers. https://www.frontiersin.org/articles/10.3389/fmicb.2017.00034/full

Brady, T. S., Merrill, B. D., Hilton, J. A., Payne, A. M., Stephenson, M. B., & Hope, S. (2017). Bacteriophages as an alternative to conventional antibiotic use for the prevention or treatment of Paenibacillus larvae in honeybee hives. Journal of invertebrate pathology, 150, 94–100. https://doi.org/10.1016/j.jip.2017.09.010

Bottone E. J. (2010). Bacillus cereus, a volatile human pathogen. Clinical microbiology reviews, 23(2), 382–398. https://doi.org/10.1128/CMR.00073-09

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2863360/

BBC News. (2021, June 6). Turkey president Erdogan vows to solve “sea snot” outbreak. https://www.bbc.co.uk/news/world-europe-57372677

Bik, E., Costello, E., Switzer, A. et al. Marine mammals harbor unique microbiotas shaped by and yet distinct from the sea. Nat Commun 7, 10516 (2016). https://doi.org/10.1038/ncomms10516

Buck, J. D., Wells, R. S., Rhinehart, H. L., & Hansen, L. J. (2006). Aerobic microorganisms associated with free-ranging bottlenose dolphins in coastal Gulf of Mexico and Atlantic Ocean waters. Journal of wildlife diseases, 42(3), 536–544. https://doi.org/10.7589/0090-3558-42.3.536

Bacteriophage Therapy https://pubmed.ncbi.nlm.nih.gov/11181338/

CDC. Antibiotic Resistance Threats in the United States, 2019. Atlanta, GA: U.S. Department of Health and Human Services, CDC; 2019.

https://www.cdc.gov/drugresistance/pdf/threats-report/2019-ar-threats-report-508.pdf

Chris Dall | News Reporter | CIDRAP News | Jul 12 2018. Novartis drops antibiotic development program. CIDRAP. https://www.cidrap.umn.edu/news-perspective/2018/07/novartis-drops-antibiotic-development-program.

Cancer Today. Global Cancer Observatory. https://gco.iarc.fr/today/data-sources-methods#title-mort.

Cui, K., Shoemaker, S.P. (2018, June 5) Public perception of genetically-modified (GM) food: A Nationwide Chinese Consumer Study. npj Sci Food 2, 10. https://doi.org/10.1038/s41538-018-0018-4

Cleverland Clinic. (n.d.). E. coli: What is It, How Does it Cause Infection, Symptoms & Causes. https://my.clevelandclinic.org/health/diseases/16638-e-coli-infection

Cox, K. D., Covernton, G. A., Davies, H. L., Dower, J. F., Juanes, F., & Dudas, S. E. (2019). Human Consumption of Microplastics. Environmental science & technology, 53(12), 7068–7074. https://doi.org/10.1021/acs.est.9b01517

Cai, W., Wang, H., Tian, Y., Chen, F., & Zheng, T. (2011). Influence of a bacteriophage on the population dynamics of toxic dinoflagellates by lysis of algicidal bacteria. Applied and environmental microbiology, 77(21), 7837–7840. https://doi.org/10.1128/AEM.05783-11

Dart, A. Phage warriors. Nat Rev Cancer 19, 544–545 (2019). https://doi.org/10.1038/s41568-019-0203-z https://www.nature.com/articles/s41568-019-0203-z#citeas

Dr Delfy Góchez, Dr Morgan Jeannin, Dr Gérard Moulin and Dr Elisabeth Erlacher-Vindel.(2021) OIE Annual report on the use of antimicrobial agents in animals Fifth Report

Drinking-water. (2019, June 15). World Health Organization.

https://www.who.int/news-room/fact-sheets/detail/drinking-water

Ebola Virus Disease. (2021, November 19). WHO | Regional Office for Africa. https://www.afro.who.int/health-topics/ebola-virus-disease

Foschi, C., Salvo, M., Cevenini, R., Parolin, C., Vitali, B., & Marangoni, A. (2017). Vaginal Lactobacilli Reduce Neisseria gonorrhoeae Viability through Multiple Strategies: An in Vitro Study. Frontiers in cellular and infection microbiology, 7, 502. https://doi.org/10.3389/fcimb.2017.00502

Fung, T.C., Vuong, H.E., Luna, C.D.G. et al. Intestinal serotonin and fluoxetine exposure modulate bacterial colonization in the gut. Nat Microbiol 4, 2064–2073 (2019). https://doi.org/10.1038/s41564-019-0540-4

Fournier, J. M., & Quilici, M. L. (2007). Choléra [Cholera]. Presse medicale (Paris, France : 1983), 36(4 Pt 2), 727–739. https://doi.org/10.1016/j.lpm.2006.11.029

Granados-Chinchilla F, Rodríguez C. Tetracyclines in Food and Feedingstuffs: From Regulation to Analytical Methods, Bacterial Resistance, and Environmental and Health Implications. J Anal Methods Chem. 2017;2017:1315497. doi:10.1155/2017/1315497 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5266830/

Golomidova A, Kulikov E, Isaeva A, Manykin A, Letarov A. (2007) The diversity of coliphages and coliforms in horse feces reveals a complex pattern of ecological interactions. Appl Environ Microbiol. 2007;73(19):5975-5981. doi:10.1128/AEM.01145-07

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2075005/

Guzmán-Novoa, E., Eccles, L., Calvete, Y. et al. Varroa destructor is the main culprit for the death and reduced populations of overwintered honey bee (Apis mellifera) colonies in Ontario,

Canada. Apidologie 41, 443–450 (2010). https://doi.org/10.1051/apido/2009076

Guzmán-Verri, C., González-Barrientos, R., Hernández-Mora, G., Morales, J. A., Baquero-Calvo, E., Chaves-Olarte, E., & Moreno, E. (2012). Brucella ceti and brucellosis in cetaceans. Frontiers in cellular and infection microbiology, 2, 3. https://doi.org/10.3389/fcimb.2012.0000

Grattarola, C., Gallina, S., Giorda, F. et al. First report of Salmonella 1,4,[5],12:i:- in free-ranging striped dolphins (Stenella coeruleoalba), Italy. Sci Rep 9, 6061 (2019). https://doi.org/10.1038/s41598-019-42474-6

Hayes, G. (2019, May 22). The Next Generation In Disease Control. Bee Culture. https://www.beeculture.com/the-next-generation-in-disease-control/

Haro, A. (2021, July 15). A Florida Red Tide Has Killed 600 Tons of Marine Life, and There’s No End In Sight. The Inertia. https://www.theinertia.com/environment/a-florida-red-tide-has-killed-600-tons-of-marine-life-and-theres-no-end-in-sight/

Inoue, D., Nagai, Y., Mori, M., Nagano, S., Takiuchi, Y., Arima, H., Kimura, T., Shimoji, S., Togami, K., Tabata, S., Yanagita, S., Matsushita, A., Nagai, K., Imai, Y., Takegawa, H., & Takahashi, T. (2010). Fulminant sepsis caused by Bacillus cereus in patients with hematologic malignancies: analysis of its prognosis and risk factors. Leukemia & lymphoma, 51(5), 860–869. https://doi.org/10.3109/10428191003713976

https://pubmed.ncbi.nlm.nih.gov/20367571/

http://www.intralytix.com/

Khan Mirzaei, M., & Deng, L. (2021). New technologies for developing phage-based tools to manipulate the human microbiome. Trends in microbiology, S0966-842X(21)00118-9. Advance online publication. https://doi.org/10.1016/j.tim.2021.04.007

Kareiviene, V., Pavilonis, A., Sinkute, G., Liegiūte, S., & Gailiene, G. (2006). Staphylococcus aureus resistance to antibiotics and spread of phage types. Medicina (Kaunas, Lithuania), 42(4), 332-339

https://pubmed.ncbi.nlm.nih.gov/16687905/

Kong, M., & Ryu, S. (2015). Bacteriophage PBC1 and its endolysin as an antimicrobial agent against Bacillus cereus. Applied and environmental microbiology, 81(7), 2274–2283. https://doi.org/10.1128/AEM.03485-14

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4357929/

Laforest, M., Bisaillon, K., Ciotola, M., Cadieux, M., Hébert, P. O., Toussaint, V., & Svircev, A. M. (2019). Rapid identification of Erwinia amylovora and Pseudomonas syringae species and characterization of E. amylovora streptomycin resistance using quantitative PCR assays. Canadian journal of microbiology, 65(7), 496–509. https://doi.org/10.1139/cjm-2018-0587

Leonard, S. P., Powell, J. E., Perutka, J., Geng, P., Heckmann, L. C., Horak, R. D., Davies, B. W., Ellington, A. D., Barrick, J. E., & Moran, N. A. (2020). Engineered symbionts activate honey bee immunity and limit pathogens. Science (New York, N.Y.), 367(6477), 573–576. https://doi.org/10.1126/science.aax9039

Lichevski, M. (n.d.). World Health Organization - Eastern Mediterranean Region. World Health Organisation Eastern Mediterranean. http://www.emro.who.int/emhj-volume-2-1996/volume-2-issue-1/article14.html

McCall, C. (2021, May 28). AgriLife Research develops treatment for Pierce’s disease. AgriLife Today. https://agrilifetoday.tamu.edu/2021/05/28/texas-am-agrilife-research-develops-bacteriophage-treatment-for-pierces-disease/

Mazzariol, S., Corrò, M., Tonon, E., Biancani, B., Centelleghe, C., & Gili, C. (2018). Death Associated to Methicillin Resistant Staphylococcus aureus ST8 Infection in Two Dolphins Maintained Under

Human Care, Italy. Frontiers in immunology, 9,2726. https://doi.org/10.3389/fimmu.2018.02726

Nibali, L., Henderson, B., Sadiq, S. T., & Donos, N. (2014). Genetic dysbiosis: the role of microbial insults in chronic inflammatory diseases. Journal of oral microbiology, 6, 10.3402/jom.v6.22962. https://doi.org/10.3402/jom.v6.22962

Parker, L. (2021, May 3). The world’s plastic pollution crisis explained. Environment.

https://www.nationalgeographic.com/environment/article/plastic-pollution

Sulakvelidze, A., Alavidze, Z., & Morris, J. G., Jr (2001). Bacteriophage therapy. Antimicrobial agents and chemotherapy, 45(3), 649–659. https://doi.org/10.1128/AAC.45.3.649-659.2001

Śliwa-Dominiak, J., Suszyńska, E., Pawlikowska, M., & Deptuła, W. (2013). Chlamydia bacteriophages. Archives of microbiology, 195(10-11), 765–771. https://doi.org/10.1007/s00203-013-0912-8 https://pubmed.ncbi.nlm.nih.gov/23903989/

Sausset, R. (2020, January 31). New insights into intestinal phages. Mucosal Immunology. https://www.nature.com/articles/s41385-019-0250-5

Strandwitz P. (2018). Neurotransmitter modulation by the gut microbiota. Brain research, 1693(Pt B),

–133. https://doi.org/10.1016/j.brainres.2018.03.015 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6005194/

Strange, Richard & Scott, Peter. (2005). Plant Disease: A Threat to Global Food Security. Annual review of phytopathology. 43. 83-116. 10.1146/annurev.phyto.43.113004.133839.

Science Direct. (n.d.). Bacillus Cereus. https://www.sciencedirect.com/topics/immunology-and-microbiology/bacillus-cereus

Staletovich, J. (2019, March 22). Dolphins

poisoned by algae also showed signs of Alzheimer’s-like brain disease. Phys.Org. https://phys.org/news/2019-03-dolphins-poisoned-algae-alzheimer-like-brain.html#:%7E:text=Dolphins%20poisoned%20by%20algae%20also%20showed%20signs%20of%20Alzheimer’s%2Dlike%20brain%20disease,-by%20Jenny%20Staletovich&text=Toxins%20produced%20by%20blue%2Dgreen,by%20University%20of%20Miami%20researchers.

Text - H.R.1587 - 115th congress (2017-2018): Preservation ... https://www.congress.gov/bill/115th-congress/house-bill/1587/text.

The Mayo Clinic. (2019, October 11). Salmonella infection - Symptoms and causes. Mayo Clinic. https://www.mayoclinic.org/diseases-conditions/salmonella/symptoms-causes/syc-20355329

https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/virginiamycin

World Health Organization. (2019, April 29). New report calls for urgent action to avert antimicrobial resistance crisis. https://www.who.int/news/item/29-04-2019-new-report-calls-for-urgent-action-to-avert-antimicrobial-resistance-crisis.

Wei, S., Chelliah, R., Rubab, M., Oh, D. H., Uddin, M. J., & Ahn, J. (2019). Bacteriophages as Potential Tools for Detection and Control of Salmonella spp. in Food Systems. Microorganisms, 7(11), 570. https://doi.org/10.3390/microorganisms711057 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6920764/

Watson, A. J. (2020, September 4). Revised estimates of ocean-atmosphere CO2 flux. . . Nature Communications. https://www.nature.com/articles/s41467-020-18203- 3#:%7E:text=The%20ocean%20is%20a%20sink,on%20the%20global%20carbon%20budget.

Yoshida, S., Hiraga, K., Takehana, T., Taniguchi, I., Yamaji, H., Maeda, Y., Toyohara, K., Miyamoto, K., Kimura, Y., & Oda, K. (2016). A bacterium that degrades and assimilates poly(ethylene terephthalate). Science (New York, N.Y.), 351(6278), 1196–1199. https://doi.org/10.1126/science.aad6359

Published

03-13-2023

How to Cite

Ilieva, N., & Nemecek, A. (2023). Exploring the Hidden Potential of Bacteriophages 3-Part Miniseries. Journal of Student Research, 11(1). https://doi.org/10.47611/jsrhs.v11i1.2386

Issue

Section

HS Review Articles