Exploring Venom Toxins as Molecular Models for Chronic Pain Treatment
DOI:
https://doi.org/10.47611/jsrhs.v11i1.2365Keywords:
Opioids, Analgesia, Sodium Channels, Venom, Toxins, Chronic Pain, Molecular ModelAbstract
The purpose of this project is to propose venomous animal toxins as molecular models for pain medication. Chronic pain is a prevalent health problem among the general population, and current pharmacological treatments are oftentimes ineffective or limited due to undesirable side-effects. This project explores the role of specific Voltage- Gated Sodium Channels, such as Sodium Channel 1.7 (NaV 1.7), in setting the stage for proposing analgesics with binding properties in peripheral pain-sensing neurons. Sodium Channels, notably NaV 1.7, play a major role in human pain signaling pathways that propagate action potentials in excitable cells. By inhibiting and blocking them, analgesic effects are known to be achievable. Through means of bioinformatic tools, we explore amino acid sequence alignments, Motif scans, tertiary structure modeling, and molecular docking of venomous animal toxins for in-silico new drug discovery research. Cysteine residues in toxins were reviewed as a possible link between acting upon the receptor and their analgesic effects. This led to the questioning of cysteine's role in the search for potential antagonists of NaV 1.7. Eventually, the attempt for a further investigation prompted the consideration for molecular docking between selected toxins and the receptor, aiming to seize chronic pain.
Downloads
References or Bibliography
Harvey A. L. (2014). Toxins and drug discovery. Toxicon : official journal of the International Society on Toxinology, 92, 193–200. https://doi.org/10.1016/j.toxicon.2014.10.020
Scholz J. (2014). Mechanisms of chronic pain. Molecular Pain, 10(Suppl 1), O15. https://doi.org/10.1186/1744- 8069-10-S1-O15
Salsitz E. A. (2016). Chronic Pain, Chronic Opioid Addiction: a Complex Nexus. Journal of medical toxicology : official journal of the American College of Medical Toxicology, 12(1), 54–57. https://doi.org/10.1007/s13181-015- 0521-9
Spahr, N., Hodkinson, D., Jolly, K., Williams, S., Howard, M., & Thacker, M. (2017). Distinguishing between nociceptive and neuropathic components in chronic low back pain using behavioural evaluation and sensory examination. Musculoskeletal science & practice, 27, 40–48. https://doi.org/10.1016/j.msksp.2016.12.006
Montero-Homs J. (2009). Dolor nociceptivo, dolor neuropático y memoria de dolor [Nociceptive pain, neuropathic pain and pain memory]. Neurologia (Barcelona, Spain), 24(6), 419–422.
Jan, F. K., & Wilson, P. E. (2004). A survey of chronic pain in the pediatric spinal cord injury population. The journal of spinal cord medicine, 27 Suppl 1, S50–S53. https://doi.org/10.1080/10790268.2004.11753785
Cummins, T. R., Sheets, P. L., & Waxman, S. G. (2007). The roles of sodium channels in nociception: Implications for mechanisms of pain. Pain, 131(3), 243–257. https://doi.org/10.1016/j.pain.2007.07.026
Gold, M. S., & Gebhart, G. F. (2010). Nociceptor sensitization in pain pathogenesis. Nature medicine, 16(11), 1248– 1257. https://doi.org/10.1038/nm.2235
Levinson, S. R., Luo, S., & Henry, M. A. (2012). The role of sodium channels in chronic pain. Muscle & nerve, 46(2), 155–165. https://doi.org/10.1002/mus.23314
Wie, C. S., & Derian, A. (2021). Ziconotide. In S tatPearls. StatPearls Publishing. Animal-World. (n.d.). Vietnamese Centipede. Animal World. https://animal-world.com/encyclo/reptiles/centipedes/VietnameseCentipede.php.
Ian. (2019, October 26). Peruvian green Velvet (THRIXOPELMA PRURIENS). Tarantula Friendly.
https://tarantulafriendly.com/peruvian-green-velvet/.
Australian tarantulas. The Australian Museum. (n.d.). https://australian.museum/learn/animals/spiders/australian-
tarantulas/.
Kerley, C. (2019, November 22). Poisonous spiders in China. Sciencing. https://sciencing.com/poisonous-spiders-
china-6059950.html.
Hall, M. (n.d.). Conus GEOGRAPHUS (GEOGRAPHY Cone snail). Animal Diversity Web.
https://animaldiversity.org/accounts/Conus_geographus/.
Huntsman spider - Facts, bite & Habitat Information. Animal Corner. (2017, February 8).
https://animalcorner.org/animals/huntsman-spider/.
Animal-World. (n.d.). Panther puffer. Animal World. https://animal-world.com/encyclo/marine/puffers/panther.php.
Broadbent, S. (2018, August 2). About the manchurian scorpion. EntoBlog. https://www.entoblog.com/about-the- manchurian-scorpion/.
Animal-World. (n.d.). Striped scorpion. Animal World. https://animal- world.com/encyclo/reptiles/scorpions/StripedScorpion.php.
Drake, N. (2021, May 3). Science still can't explain why these tarantulas are blue. Animals. https://www.nationalgeographic.com/animals/article/151127-blue-tarantula-science-explain-animals.
(n.d.). Pubmed. National Center for Biotechnology Information. https://pubmed.ncbi.nlm.nih.gov/.
(n.d.). UniProt consortium. UniProt ConsortiumEuropean Bioinformatics Institute Protein Information Resource SIB Swiss Institute of Bioinformatics. https://www.uniprot.org/.
(n.d.). COBALT:Multiple alignment tool. National Center for Biotechnology Information. https://www.ncbi.nlm.nih.gov/tools/cobalt/re_cobalt.cgi.
Motif: Searching protein sequence motifs. GenomeNet icon. (n.d.). https://www.genome.jp/tools/motif/. Motif scan. (1970, January 1). https://myhits.sib.swiss/cgi-bin/motif_scan.
Model. SWISS. (n.d.). https://swissmodel.expasy.org/.
Bank, R. C. S. B. P. D. (n.d.). The Protein Data Bank. RCSB PDB. https://www.rcsb.org/.
Desta IT, Porter KA, Xia B, Kozakov D, Vajda S. Performance and Its Limits in Rigid Body Protein-Protein Docking. Structure. 2020 Sep; 28 (9):1071-1081. doi Vajda S, Yueh C, Beglov D, Bohnuud T, Mottarella SE, Xia B, Hall DR, Kozakov D. New additions to the ClusPro server motivated by CAPRI. Proteins: Structure, Function, and Bioinformatics. 2017 Mar; 85(3):435-444. pdf Kozakov D, Hall DR, Xia B, Porter KA, Padhorny D, Yueh C, Beglov D, Vajda S. The ClusPro web server for protein-protein docking. Nature Protocols. 2017 Feb;12(2):255-278. pdf Kozakov D, Beglov D, Bohnuud T, Mottarella S, Xia B, Hall DR, Vajda, S. How good is automated protein docking? Proteins: Structure, Function, and Bioinformatics. 2013 Dec; 81(12):2159-66. pdf
AutoDock Vina. AutoDock Vina - molecular docking and virtual screening program. (n.d.). http://vina.scripps.edu/.
UCSF Chimera . UCSF chimera home page. (n.d.). https://www.cgl.ucsf.edu/chimera/.
Wang, C., Shan, B., Wang, Q., Xu, Q., Zhang, H., & Lei, H. (2017). Fusion of Ssm6a with a protein scaffold retains selectivity on NaV 1.7 and improves its therapeutic potential against chronic pain. Chemical biology & drug design, 89(6), 825–833. https://doi.org/10.1111/cbdd.12915
Cardoso, F. C., Dekan, Z., Rosengren, K. J., Erickson, A., Vetter, I., Deuis, J. R., Herzig, V., Alewood, P. F., King, G. F., & Lewis, R. J. (2015). Identification and Characterization of ProTx-III [μ-TRTX-Tp1a], a New Voltage- Gated Sodium Channel Inhibitor from Venom of the Tarantula Thrixopelma pruriens. Molecular pharmacology, 88(2), 291–303. https://doi.org/10.1124/mol.115.098178
Chow, C. Y., Cristofori-Armstrong, B., Undheim, E. A., King, G. F., & Rash, L. D. (2015). Three Peptide Modulators of the Human Voltage-Gated Sodium Channel 1.7, an Important Analgesic Target, from the Venom of an Australian Tarantula. Toxins, 7(7), 2494–2513. https://doi.org/10.3390/toxins7072494
Liu, Z., Cai, T., Zhu, Q., Deng, M., Li, J., Zhou, X., Zhang, F., Li, D., Li, J., Liu, Y., Hu, W., & Liang, S. (2013). Structure and function of hainantoxin-III, a selective antagonist of neuronal tetrodotoxin-sensitive voltage-gated sodium channels isolated from the Chinese bird spider Ornithoctonus hainana. The Journal of biological chemistry, 288(28), 20392–20403. https://doi.org/10.1074/jbc.M112.426627
Peigneur, S., Cheneval, O., Maiti, M., Leipold, E., Heinemann, S. H., Lescrinier, E., Herdewijn, P., De Lima, M. E., Craik, D. J., Schroeder, C. I., & Tytgat, J. (2019). Where cone snails and spiders meet: design of small cyclic sodium-channel inhibitors. FASEB journal : official publication of the Federation of American Societies for Experimental Biology, 33(3), 3693–3703. https://doi.org/10.1096/fj.201801909R
Wu, X., Wang, Z., Chen, Y., Xu, D., Zhang, P., & Wang, X. (2019). Newly Discovered Action of HpTx3 from Venom of Heteropoda venatoria on Nav1.7 and Its Pharmacological Implications in Analgesia. Toxins, 11(12), 680. https://doi.org/10.3390/toxins11120680
Tsukamoto, T., Chiba, Y., Wakamori, M., Yamada, T., Tsunogae, S., Cho, Y., Sakakibara, R., Imazu, T., Tokoro, S., Satake, Y., Adachi, M., Nishikawa, T., Yotsu-Yamashita, M., & Konoki, K. (2017). Differential binding of tetrodotoxin and its derivatives to voltage-sensitive sodium channel subtypes (Nav 1.1 to Nav 1.7). British journal of pharmacology, 174(21), 3881–3892. https://doi.org/10.1111/bph.13985
Zhao, F., Wang, J. L., Ming, H. Y., Zhang, Y. N., Dun, Y. Q., Zhang, J. H., & Song, Y. B. (2020). Insights into the binding mode and functional components of the analgesic-antitumour peptide from Buthus martensii Karsch to human voltage-gated sodium channel 1.7 based on dynamic simulation analysis. Journal of biomolecular structure & dynamics, 38(6), 1868–1879. https://doi.org/10.1080/07391102.2019.1620126
Rowe, A. H., Xiao, Y., Scales, J., Linse, K. D., Rowe, M. P., Cummins, T. R., & Zakon, H. H. (2011). Isolation and characterization of CvIV4: a pain inducing α-scorpion toxin. PloS one, 6(8), e23520. https://doi.org/10.1371/journal.pone.0023520
Mueller, A., Dekan, Z., Kaas, Q., Agwa, A. J., Starobova, H., Alewood, P. F., Schroeder, C. I., Mobli, M., Deuis, J. R., & Vetter, I. (2020). Mapping the Molecular Surface of the Analgesic NaV1.7-Selective Peptide Pn3a Reveals Residues Essential for Membrane and Channel Interactions. ACS pharmacology & translational science, 3(3), 535– 546. https://doi.org/10.1021/acsptsci.0c00002
Wright, Z., McCarthy, S., Dickman, R., Reyes, F. E., Sanchez-Martinez, S., Cryar, A., Kilford, I., Hall, A., Takle, A. K., Topf, M., Gonen, T., Thalassinos, K., & Tabor, A. B. (2017). The Role of Disulfide Bond Replacements in Analogues of the Tarantula Toxin ProTx-II and Their Effects on Inhibition of the Voltage-Gated Sodium Ion Channel Nav1.7. Journal of the American Chemical Society, 139(37), 13063–13075. https://doi.org/10.1021/jacs.7b06506
Truini, A., Piroso, S., Pasquale, E., Notartomaso, S., Di Stefano, G., Lattanzi, R., Battaglia, G., Nicoletti, F., & Cruccu, G. (2015). N-acetyl-cysteine, a drug that enhances the endogenous activation of group-II metabotropic glutamate receptors, inhibits nociceptive transmission in humans. Molecular pain, 11, 14. https://doi.org/10.1186/s12990-015-0009-2
Bernabucci, M., Notartomaso, S., Zappulla, C., Fazio, F., Cannella, M., Motolese, M., Battaglia,
G., Bruno, V., Gradini, R., & Nicoletti, F. (2012). N-Acetyl-cysteine causes analgesia by reinforcing the endogenous activation of type-2 metabotropic glutamate receptors. Molecular pain, 8, 77. https://doi.org/10.1186/1744-8069-8-77
Goldsztejn, G., Mundlapati, V. R., Brenner, V., Gloaguen, E., Mons, M., Cabezas, C., León, I., & Alonso, J. L. (2020). Intrinsic folding of the cysteine residue: competition between folded and extended forms mediated by the - SH group. Physical chemistry chemical physics : PCCP, 22(36), 20284–20294. https://doi.org/10.1039/d0cp03136d
Rao, S., Lynch, C. I., Klesse, G., Oakley, G. E., Stansfeld, P. J., Tucker, S. J., & Sansom, M. (2018). Water and hydrophobic gates in ion channels and nanopores. Faraday discussions, 209(0), 231–247. https://doi.org/10.1039/c8fd00013a
Published
How to Cite
Issue
Section
Copyright (c) 2022 Kimia Shahriyar; Dr. Olga Chaim
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Copyright holder(s) granted JSR a perpetual, non-exclusive license to distriute & display this article.