Using CRISPR-Cas9 to Target EGFRvIII and SIRP-ɑ for Glioblastoma Treatment
DOI:
https://doi.org/10.47611/jsrhs.v10i4.2297Keywords:
glioblastoma, CRISPR-Cas9, gene knockout, blood-brain barrier, EGFRvIII, immunotherapy, tumor-associated microglia/macrophages, CD47/SIRP-α axisAbstract
Glioblastoma (GBM) is an aggressive grade 4 brain tumor with a poor prognosis, with the 5-year survival rate remaining at a mere 5%. Standard first-line treatment consists of maximal safe resection followed by concomitant daily temozolomide with radiotherapy. However, tumor recurrence is frequent, and second-line treatments are lacking. While new therapies have been intensely studied, challenges with delivery across the blood-brain barrier (BBB) have largely hampered efforts to develop new efficacious glioblastoma treatments. The development of gene therapy like CRISPR-Cas9 to treat GBM is consequently still in the early stages. This review delves into how nanoparticles could be utilized to deliver CRISPR-Cas9 across the BBB into the tumor microenvironment and effectively edit both glioblastoma cells and tumor-associated microglia/macrophages (TAMs). This review will discuss the prevalence of the EGFRvIII mutation in GBM cells and its significant role in facilitating cell proliferation and the evasion of apoptosis, analyzing EGFRvIII as a potential target for gene knockout through CRISPR editing. Further, the immunosuppressive tumor microenvironment that characterizes GBM will be described, with an explanation of how TAMs contribute to tumorigenesis through their M2 polarization. Finally, the review will analyze the importance of the CD47/SIRP-α axis to the pro-tumorigenic nature of TAMs. It will study the possibility of disrupting SIRP-α expression in TAMs through CRISPR-Cas9 as a potential immunotherapy for GBM. Overall, this review will outline how the use of CRISPR-Cas9 to knock out EGFRvIII in GBM cells and SIRP-α in TAMs could potentially transform GBM treatment and substantially improve prognosis in patients.
Downloads
References or Bibliography
Alexander, B. M., & Cloughesy, T. F. (2017). Adult glioblastoma. Journal of Clinical Oncology, 35(21), 2402–2409. https://doi.org/10.1200/JCO.2017.73.0119
An, Z., Aksoy, O., Zheng, T., Fan, Q. W., & Weiss, W. A. (2018). Epidermal growth factor receptor and EGFRvIII in glioblastoma: Signaling pathways and targeted therapies. In Oncogene (Vol. 37, Issue 12, pp. 1561–1575). NIH Public Access. https://doi.org/10.1038/s41388-017-0045-7
Banerjee, K., Núñez, F. J., Haase, S., McClellan, B. L., Faisal, S. M., Carney, S. V, Yu, J., Alghamri, M. S., Asad, A. S., Candia, A. J. N., Varela, M. L., Candolfi, M., Lowenstein, P. R., & Castro, M. G. (2021). Current Approaches for Glioma Gene Therapy and Virotherapy. In Frontiers in Molecular Neuroscience (Vol. 14). https://doi.org/10.3389/fnmol.2021.621831
Barclay, A. N., & Van Den Berg, T. K. (2014). The interaction between signal regulatory protein alpha (SIRPα) and CD47: Structure, function, and therapeutic target. In Annual Review of Immunology (Vol. 32, pp. 25–50). Annual Reviews. https://doi.org/10.1146/annurev-immunol-032713-120142
Buonfiglioli, A., & Hambardzumyan, D. (2021). Macrophages and microglia: the cerberus of glioblastoma. Acta Neuropathologica Communications, 9(1), 1–21. https://doi.org/10.1186/s40478-021-01156-z
Cota-Coronado, A., Díaz-Martínez, N. F., Padilla-Camberos, E., & Díaz-Martínez, N. E. (2019). Editing the central nervous system through CRISPR/cas9 systems. Frontiers in Molecular Neuroscience, 12(May), 1–13. https://doi.org/10.3389/fnmol.2019.00110
Davis, M. E. (2016). Glioblastoma: Overview of disease and treatment. Clinical Journal of Oncology Nursing, 20(5), 1–8. https://doi.org/10.1188/16.CJON.S1.2-8
Doudna, J. A., & Charpentier, E. (2014). The new frontier of genome engineering with CRISPR-Cas9. Science, 346(6213). https://doi.org/10.1126/science.1258096
Duan, L., Ouyang, K., Xu, X., Xu, L., Wen, C., Zhou, X., Qin, Z., Xu, Z., Sun, W., & Liang, Y. (2021). Nanoparticle Delivery of CRISPR/Cas9 for Genome Editing. Frontiers in Genetics, 12(May). https://doi.org/10.3389/fgene.2021.673286
Elsamadicy, A. A., Chongsathidkiet, P., Desai, R., Woroniecka, K., Farber, S. H., Fecci, P. E., & Sampson, J. H. (2017). Prospect of rindopepimut in the treatment of glioblastoma. Expert Opinion on Biological Therapy, 17(4), 507–513. https://doi.org/10.1080/14712598.2017.1299705
Eskilsson, E., Røsland, G. V., Solecki, G., Wang, Q., Harter, P. N., Graziani, G., Verhaak, R. G. W., Winkler, F., Bjerkvig, R., & Miletic, H. (2018). EGFR heterogeneity and implications for therapeutic intervention in glioblastoma. Neuro-Oncology, 20(6), 743–752. https://doi.org/10.1093/neuonc/nox191
Gan, H. K., Cvrljevic, A. N., & Johns, T. G. (2013). The epidermal growth factor receptor variant III (EGFRvIII): Where wild things are altered. FEBS Journal, 280(21), 5350–5370. https://doi.org/10.1111/febs.12393
Grégoire, H., Roncali, L., Rousseau, A., Chérel, M., Delneste, Y., Jeannin, P., Hindré, F., & Garcion, E. (2020). Targeting Tumor Associated Macrophages to Overcome Conventional Treatment Resistance in Glioblastoma. In Frontiers in Pharmacology (Vol. 11). https://doi.org/10.3389/fphar.2020.00368
Hu, J., Xiao, Q., Dong, M., Guo, D., Wu, X., & Wang, B. (2020). Glioblastoma Immunotherapy Targeting the Innate Immune Checkpoint CD47-SIRPα Axis. In Frontiers in Immunology (Vol. 11). https://doi.org/10.3389/fimmu.2020.593219
Huang, K., Yang, C., Wang, Q. xue, Li, Y. sheng, Fang, C., Tan, Y. li, Wei, J. wei, Wang, Y. fei, Li, X., Zhou, J. hu, Zhou, B. cong, Yi, K. kai, Zhang, K. liang, Li, J., & Kang, C. sheng. (2017). The CRISPR/Cas9 system targeting EGFR exon 17 abrogates NF-κB activation via epigenetic modulation of UBXN1 in EGFRwt/vIII glioma cells. Cancer Letters, 388, 269–280. https://doi.org/10.1016/j.canlet.2016.12.011
Hutter, G., Theruvath, J., Graef, C. M., Zhang, M., Schoen, M. K., Manz, E. M., Bennett, M. L., Olson, A., Azad, T. D., Sinha, R., Chan, C., Kahn, S. A., Gholamin, S., Wilson, C., Grant, G., He, J., Weissman, I. L., Mitra, S. S., & Cheshier, S. H. (2019). Microglia are effector cells of CD47-SIRPα antiphagocytic axis disruption against glioblastoma. Proceedings of the National Academy of Sciences of the United States of America, 116(3), 997–1006. https://doi.org/10.1073/pnas.1721434116
Jena, L., McErlean, E., & McCarthy, H. (2020). Delivery across the blood-brain barrier: nanomedicine for glioblastoma multiforme. In Drug Delivery and Translational Research (Vol. 10, Issue 2, pp. 304–318). Springer. https://doi.org/10.1007/s13346-019-00679-2
Kim, C., Shah, B. P., Subramaniam, P., & Lee, K. B. (2011). Synergistic induction of apoptosis in brain cancer cells by targeted codelivery of siRNA and anticancer drugs. Molecular Pharmaceutics, 8(5), 1955–1961. https://doi.org/10.1021/mp100460h
Kim, S. S., Harford, J. B., Pirollo, K. F., & Chang, E. H. (2015). Effective treatment of glioblastoma requires crossing the blood-brain barrier and targeting tumors including cancer stem cells: The promise of nanomedicine. In Biochemical and Biophysical Research Communications (Vol. 468, Issue 3, pp. 485–489). https://doi.org/10.1016/j.bbrc.2015.06.137
Koo, T., Yoon, A. R., Cho, H. Y., Bae, S., Yun, C. O., & Kim, J. S. (2017). Selective disruption of an oncogenic mutant allele by CRISPR/Cas9 induces efficient tumor regression. Nucleic Acids Research, 45(13), 7897–7908. https://doi.org/10.1093/nar/gkx490
Lee, B., Lee, K., Panda, S., Gonzales-Rojas, R., Chong, A., Bugay, V., Park, H. M., Brenner, R., Murthy, N., & Lee, H. Y. (2018). Nanoparticle delivery of CRISPR into the brain rescues a mouse model of fragile X syndrome from exaggerated repetitive behaviours. Nature Biomedical Engineering, 2(7), 497–507. https://doi.org/10.1038/s41551-018-0252-8
Li, Q. J., Cai, J. Q., & Liu, C. Y. (2016). Evolving molecular genetics of glioblastoma. Chinese Medical Journal, 129(4), 464–471. https://doi.org/10.4103/0366-6999.176065
Maas, S. L. N., Abels, E. R., Van De Haar, L. L., Zhang, X., Morsett, L., Sil, S., Guedes, J., Sen, P., Prabhakar, S., Hickman, S. E., Lai, C. P., Ting, D. T., Breakefield, X. O., Broekman, M. L. D., & El Khoury, J. (2020). Glioblastoma hijacks microglial gene expression to support tumor growth. Journal of Neuroinflammation, 17(1), 1–18. https://doi.org/10.1186/s12974-020-01797-2
Malkki, H. (2016). Trial Watch: Glioblastoma vaccine therapy disappointment in Phase III trial. In Nature reviews. Neurology (Vol. 12, Issue 4, p. 190). Nature Publishing Group. https://doi.org/10.1038/nrneurol.2016.38
Meneghini, V., Peviani, M., Luciani, M., Zambonini, G., & Gritti, A. (2021). Delivery Platforms for CRISPR/Cas9 Genome Editing of Glial Cells in the Central Nervous System. Frontiers in Genome Editing, 3, 644319. https://doi.org/10.3389/fgeed.2021.644319
Morisse, M. C., Jouannet, S., Dominguez-Villar, M., Sanson, M., & Idbaih, A. (2018). Interactions between tumor-associated macrophages and tumor cells in glioblastoma: unraveling promising targeted therapies. Expert Review of Neurotherapeutics, 18(9), 729–737. https://doi.org/10.1080/14737175.2018.1510321
Ohgaki, H., & Kleihues, P. (2013). The definition of primary and secondary glioblastoma. Clinical Cancer Research, 19(4), 764–772. https://doi.org/10.1158/1078-0432.CCR-12-3002
Pan, Y. fei, Tan, Y. xiong, Wang, M., Zhang, J., Zhang, B., Yang, C., Ding, Z. wen, Dong, L. wei, & Wang, H. yang. (2013). Signal regulatory protein α is associated with tumor-polarized macrophages phenotype switch and plays a pivotal role in tumor progression. Hepatology, 58(2), 680–691. https://doi.org/10.1002/hep.26391
Peviani, M., Capasso Palmiero, U., Cecere, F., Milazzo, R., Moscatelli, D., & Biffi, A. (2019). Biodegradable polymeric nanoparticles administered in the cerebrospinal fluid: Brain biodistribution, preferential internalization in microglia and implications for cell-selective drug release. Biomaterials, 209, 25–40. https://doi.org/10.1016/j.biomaterials.2019.04.012
Pires-Afonso, Y., Niclou, S. P., & Michelucci, A. (2020). Revealing and harnessing tumour-associated microglia/macrophage heterogeneity in glioblastoma. In International Journal of Molecular Sciences (Vol. 21, Issue 3). https://doi.org/10.3390/ijms21030689
Ran, F. A., Hsu, P. D., Wright, J., Agarwala, V., Scott, D. A., & Zhang, F. (2013). Genome engineering using the CRISPR-Cas9 system. Nature Protocols, 8(11), 2281–23083. https://doi.org/10.1038/nprot.2013.143
Ray, M., Lee, Y. W., Hardie, J., Mout, R., Yeşilbag Tonga, G., Farkas, M. E., & Rotello, V. M. (2018). CRISPRed Macrophages for Cell-Based Cancer Immunotherapy. Bioconjugate Chemistry, 29(2), 445–450. https://doi.org/10.1021/acs.bioconjchem.7b00768
Roesch, S., Rapp, C., Dettling, S., & Herold-Mende, C. (2018). When immune cells turn bad—tumor-associated microglia/macrophages in glioma. International Journal of Molecular Sciences, 19(2). https://doi.org/10.3390/ijms19020436
Rosenblum, D., Gutkin, A., Kedmi, R., Ramishetti, S., Veiga, N., Jacobi, A. M., Schubert, M. S., Friedmann-Morvinski, D., Cohen, Z. R., Behlke, M. A., Lieberman, J., & Peer, D. (2020). CRISPR-Cas9 genome editing using targeted lipid nanoparticles for cancer therapy. Science Advances, 6(47). https://doi.org/10.1126/sciadv.abc9450
Soomro, S. H., Ting, L. R., Qing, Y. Y., & Ren, M. (2017). Molecular Classification of Glioblastoma. 1410–1414. http://jpma.org.pk.ezp.welch.jhmi.edu/PdfDownload/8359.pdf
Stadtmauer, E. A., Fraietta, J. A., Davis, M. M., Cohen, A. D., Weber, K. L., Lancaster, E., Mangan, P. A., Kulikovskaya, I., Gupta, M., Chen, F., Tian, L., Gonzalez, V. E., Xu, J., Jung, I. young, Joseph Melenhorst, J., Plesa, G., Shea, J., Matlawski, T., Cervini, A., … June, C. H. (2020). CRISPR-engineered T cells in patients with refractory cancer. Science, 367(6481). https://doi.org/10.1126/science.aba7365
Tan, A. C., Ashley, D. M., López, G. Y., Malinzak, M., Friedman, H. S., & Khasraw, M. (2020). Management of glioblastoma: State of the art and future directions. CA: A Cancer Journal for Clinicians, 70(4), 299–312. https://doi.org/10.3322/caac.21613
Taylor, O. G., Brzozowski, J. S., & Skelding, K. A. (2019). Glioblastoma multiforme: An overview of emerging therapeutic targets. Frontiers in Oncology, 9(SEP), 1–11. https://doi.org/10.3389/fonc.2019.00963
Westphal, M., Maire, C. L., & Lamszus, K. (2017). EGFR as a Target for Glioblastoma Treatment: An Unfulfilled Promise. CNS Drugs, 31(9), 723–735. https://doi.org/10.1007/s40263-017-0456-6
Xu, H., Zong, H., Ma, C., Ming, X., Shang, M., Li, K., He, X., Du, H., & Cao, L. (2017). Epidermal growth factor receptor in glioblastoma (Review). Oncology Letters, 14(1), 512–516. https://doi.org/10.3892/ol.2017.6221
Yang, H., Shao, R., Huang, H., Wang, X., Rong, Z., & Lin, Y. (2019). Engineering macrophages to phagocytose cancer cells by blocking the CD47/SIRPɑ axis. In Cancer Medicine (Vol. 8, Issue 9, pp. 4245–4253). https://doi.org/10.1002/cam4.2332
Yoon, A. R., Jung, B. K., Choi, E., Chung, E., Hong, J. W., Kim, J. S., Koo, T., & Yun, C. O. (2020). CRISPR-Cas12a with an oAd Induces Precise and Cancer-Specific Genomic Reprogramming of EGFR and Efficient Tumor Regression. Molecular Therapy, 28(10), 2286–2296. https://doi.org/10.1016/j.ymthe.2020.07.003
Zhang, M., Hutter, G., Kahn, S. A., Azad, T. D., Gholamin, S., Xu, C. Y., Liu, J., Achrol, A. S., Richard, C., Sommerkamp, P., Schoen, M. K., McCracken, M. N., Majeti, R., Weissman, I., Mitra, S. S., & Cheshier, S. H. (2016). Anti-CD47 treatment stimulates phagocytosis of glioblastoma by M1 and M2 polarized macrophages and promotes M1 polarized macrophages in vivo. PLoS ONE, 11(4), 1–21. https://doi.org/10.1371/journal.pone.0153550
Published
How to Cite
Issue
Section
Copyright (c) 2021 Maurice Ga Hay Leung; Nicole Guilz
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Copyright holder(s) granted JSR a perpetual, non-exclusive license to distriute & display this article.