Exploring the Blood Brain Barrier: Structure, Function, and Medical Implications
DOI:
https://doi.org/10.47611/jsrhs.v10i4.2271Keywords:
blood brain barrier, SARS-CoV-2, tDCS, nanocarriers, permeabilityAbstract
The blood brain barrier is the brain’s physical defense against pathogens and substances that may alter cerebral homeostasis. It is formed under instruction of neurons via astrocytes, and primarily consists of tightly junctioned brain capillary endothelial cells and pericytes. In this review, we first discuss the structure and function of the blood brain barrier, including the variety of transport methods incorporated to maintain cerebral homeostasis, such as transport channels, membrane transport, carrier mediated transcytosis, receptor mediated transcytosis, adsorption mediated transcytosis, and efflux systems. Then, we focus on the three pathways of pathogenic invasion of the blood brain barrier- paracellular, transcellular, and the “Trojan Horse” mechanism, and elaborate specifically on the capability of the SI protein on the SARS-CoV-2 virus to cross the blood brain barrier, causing encephalitis. Finally, we explore the challenge the blood brain barrier’s extremely low vascular permeability poses on medicine and attempts to overcome these challenges using tDCS and nanocarriers. Thus, the blood brain barrier, its structure and function, and its scientific and medical implications remain intriguing frontiers of science.
Downloads
References or Bibliography
Ballabh P, Braun A, Nedergaard M. The blood-brain barrier: an overview: structure, regulation, and clinical implications. Neurobiol Dis. 2004 Jun;16(1):1-13. doi: 10.1016/j.nbd.2003.12.016. PMID: 15207256.
Segarra, M., Aburto, M. R., & Acker-Palmer, A. (2021). Blood–brain barrier dynamics to maintain brain homeostasis. Trends in Neurosciences.
Gonzalez-Mariscal, L., Betanzos, A., Nava, P., & Jaramillo, B. E. (2003). Tight junction proteins. Progress in biophysics and molecular biology, 81(1), 1-44.
Thomsen, M. S., Routhe, L. J., & Moos, T. (2017). The vascular basement membrane in the healthy and pathological brain. Journal of Cerebral Blood Flow & Metabolism, 37(10), 3300-3317.
Jäkel, S., & Dimou, L. (2017). Glial cells and their function in the adult brain: a journey through the history of their ablation. Frontiers in cellular neuroscience, 11, 24.
Cabezas, R., Ávila, M., Gonzalez, J., El-Bachá, R. S., Báez, E., García-Segura, L. M., ... & Barreto, G. E. (2014). Astrocytic modulation of blood brain barrier: perspectives on Parkinson’s disease. Frontiers in cellular neuroscience, 8, 211.
Daneman, R., & Prat, A. (2015). The blood–brain barrier. Cold Spring Harbor perspectives in biology, 7(1), a020412.
Profaci, C. P., Munji, R. N., Pulido, R. S., & Daneman, R. (2020). The blood–brain barrier in health and disease: Important unanswered questions. Journal of Experimental Medicine, 217(4).
Wong, A., Ye, M., Levy, A., Rothstein, J., Bergles, D., & Searson, P. C. (2013). The blood-brain barrier: an engineering perspective. Frontiers in neuroengineering, 6, 7.
Alberts B, Johnson A, Lewis J, et al. Molecular Biology of the Cell. 4th edition. New York: Garland Science; 2002. Carrier Proteins and Active Membrane Transport. Available from: https://www.ncbi.nlm.nih.gov/books/NBK26896/
Hervé, F., Ghinea, N., & Scherrmann, J. M. (2008). CNS delivery via adsorptive transcytosis. The AAPS journal, 10(3), 455-472.
Chen, Z., & Li, G. (2021). Immune response and blood–brain barrier dysfunction during viral neuroinvasion. Innate Immunity, 27(2), 109-117.
How pathogens penetrate the blood-brain barrier. ASM.org. (2020, April 17). https://asm.org/Articles/2020/April/How-Pathogens-Penetrate-the-Blood-Brain-Barrier.
Huang SH, Jong AY. Cellular mechanisms of microbial proteins contributing to invasion of the blood-brain barrier. Cell Microbiol. 2001 May;3(5):277-87. doi: 10.1046/j.1462-5822.2001.00116.x. PMID: 11298651.
Lucia Pulzova, Mangesh R. Bhide, Kovac Andrej, Pathogen translocation across the blood-brain barrier, FEMS Immunology & Medical Microbiology, Volume 57, Issue 3, December 2009, Pages 203–213, https://doi.org/10.1111/j.1574-695X.2009.00594.x
Yeager, A. (2019, March 1). Infographic: Viruses on the brain. The Scientist Magazine®. https://www.the-scientist.com/infographics/infographic--viruses-on-the-brain-65532.
Santiago-Tirado FH, Onken MD, Cooper JA, Klein RS, Doering TL. Trojan Horse Transit Contributes to Blood-Brain Barrier Crossing of a Eukaryotic Pathogen. mBio. 2017 Jan 31;8(1):e02183-16. doi: 10.1128/mBio.02183-16. PMID: 28143979; PMCID: PMC5285505.
Rhea, E.M., Logsdon, A.F., Hansen, K.M. et al. The S1 protein of SARS-CoV-2 crosses the blood–brain barrier in mice. Nat Neurosci 24, 368–378 (2021). https://doi.org/10.1038/s41593-020-00771-8
Neurostimulation - transcranial direct current stimulation. Center for BrainHealth. (2018, January 17). https://brainhealth.utdallas.edu/food-for-thought-neurostimulation/.
Mennitto, D. (2019, May 28). The brain Stimulation program at The Johns Hopkins hospital in Baltimore, Maryland. The Brain Stimulation Program at The Johns Hopkins Hospital in Baltimore, Maryland. https://www.hopkinsmedicine.org/psychiatry/specialty_areas/brain_stimulation/tdcs.html.
Shin, D. W., Fan, J., Luu, E., Khalid, W., Xia, Y., Khadka, N., Bikson, M., & Fu, B. M. (2020). In Vivo Modulation of the Blood-Brain Barrier Permeability by Transcranial Direct Current Stimulation (tDCS). Annals of biomedical engineering, 48(4), 1256–1270. https://doi.org/10.1007/s10439-020-02447-7
Mulvihill, J. J., Cunnane, E. M., Ross, A. M., Duskey, J. T., Tosi, G., & Grabrucker, A. M. (2020). Drug delivery across the blood–brain barrier: recent advances in the use of nanocarriers. Nanomedicine, 15(2), 205-214.
Din, F. U., Aman, W., Ullah, I., Qureshi, O. S., Mustapha, O., Shafique, S., & Zeb, A. (2017). Effective use of nanocarriers as drug delivery systems for the treatment of selected tumors. International journal of nanomedicine, 12, 7291–7309. https://doi.org/10.2147/IJN.S146315
Published
How to Cite
Issue
Section
Copyright (c) 2021 Jassie Roberts; Janice Huang
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Copyright holder(s) granted JSR a perpetual, non-exclusive license to distriute & display this article.