Comparing Qubit Platforms in the Race to Feasible Quantum Computing
DOI:
https://doi.org/10.47611/jsrhs.v10i4.2236Keywords:
Quantum computing, QubitsAbstract
Quantum computing is an emerging field that has been attracting a substantial amount of interest in the scientific community lately due to the advantages of quantum information processing. The fundamental unit of quantum information that makes up a quantum computer is a qubit. Several platforms have been proposed as physical realisations of these qubits for the purpose of making quantum computing a feasible technology, yet no one platform has significantly outperformed the others. This literature review discusses the current state of the field of quantum computing, by comparing and contrasting some of the most promising qubit platforms of today. By doing so, this paper analyses each of their feasibilities for full-scale quantum computing in the future and maps out a possible trajectory for how quantum computing may progress in the next few years
Downloads
References or Bibliography
Angus, S. J., Ferguson, A. J., Dzurak, A. S., & Clark, R. G. (2007). Gate-Defined Quantum Dots in Intrinsic Silicon. Nano Letters, 7(7), 2051–2055. https://doi.org/10.1021/nl070949k
Arute, F., Arya, K., Babbush, R., Bacon, D., Bardin, J. C., Barends, R., Biswas, R., Boixo, S., Brandao, F. G. S. L., Buell, D. A., Burkett, B., Chen, Y., Chen, Z., Chiaro, B., Collins, R., Courtney, W., Dunsworth, A., Farhi, E., Foxen, B., … Martinis, J. M. (2019). Quantum supremacy using a programmable superconducting processor. Nature, 574(7779), 505–510. https://doi.org/10.1038/s41586-019-1666-5
Ballance, C. J., Harty, T. P., Linke, N. M., Sepiol, M. A., & Lucas, D. M. (2016). High-Fidelity Quantum Logic Gates Using Trapped-Ion Hyperfine Qubits. Physical Review Letters, 117(6), 060504. https://doi.org/10.1103/PhysRevLett.117.060504
Barends, R., Quintana, C. M., Petukhov, A. G., Chen, Y., Kafri, D., Kechedzhi, K., Collins, R., Naaman, O., Boixo, S., Arute, F., Arya, K., Buell, D., Burkett, B., Chen, Z., Chiaro, B., Dunsworth, A., Foxen, B., Fowler, A., Gidney, C., … Martinis, J. M. (2019). Diabatic Gates for Frequency-Tunable Superconducting Qubits. Physical Review Letters, 123(21), 210501. https://doi.org/10.1103/PhysRevLett.123.210501
Barredo, D., de Léséleuc, S., Lienhard, V., Lahaye, T., & Browaeys, A. (2016). An atom-by-atom assembler of defect-free arbitrary two-dimensional atomic arrays. Science, 354(6315), 1021–1023. https://doi.org/10.1126/science.aah3778
Bermudez, A., Xu, X., Nigmatullin, R., O’Gorman, J., Negnevitsky, V., Schindler, P., Monz, T., Poschinger, U. G., Hempel, C., Home, J., Schmidt-Kaler, F., Biercuk, M., Blatt, R., Benjamin, S., & Müller, M. (2017). Assessing the Progress of Trapped-Ion Processors Towards Fault-Tolerant Quantum Computation. Physical Review X, 7(4), 041061. https://doi.org/10.1103/PhysRevX.7.041061
Bernien, H., Schwartz, S., Keesling, A., Levine, H., Omran, A., Pichler, H., Choi, S., Zibrov, A. S., Endres, M., Greiner, M., Vuletić, V., & Lukin, M. D. (2017). Probing many-body dynamics on a 51-atom quantum simulator. Nature, 551(7682), 579–584. https://doi.org/10.1038/nature24622
Chiaverini, J., Blakestad, R. B., Britton, J., Jost, J. D., Langer, C., Leibfried, D., Ozeri, R., & Wineland, D. J. (2005). Surface-electrode architecture for ion-trap quantum information processing. Quantum Information and Computation, 5(6), 419–439. https://doi.org/10.26421/QIC5.6-1
Cirac, J. I., & Zoller, P. (1995). Quantum Computations with Cold Trapped Ions. Physical Review Letters, 74(20), 4091–4094. https://doi.org/10.1103/PhysRevLett.74.4091
Crain, S., Cahall, C., Vrijsen, G., Wollman, E. E., Shaw, M. D., Verma, V. B., Nam, S. W., & Kim, J. (2019). High-Speed Low-Crosstalk Detection of a $^{171}$Yb$^+$ Qubit using Superconducting Nanowire Single Photon Detectors. ArXiv:1902.04059 [Quant-Ph]. http://arxiv.org/abs/1902.04059
Debnath, S., Linke, N. M., Figgatt, C., Landsman, K. A., Wright, K., & Monroe, C. (2016). Demonstration of a small programmable quantum computer with atomic qubits. Nature, 536(7614), 63–66. https://doi.org/10.1038/nature18648
DiVincenzo, D. P. (2000). The Physical Implementation of Quantum Computation. Fortschritte Der Physik, 48(9–11), 771–783. https://doi.org/10.1002/1521-3978(200009)48:9/11<771::AID-PROP771>3.0.CO;2-E
Endres, M., Bernien, H., Keesling, A., Levine, H., Anschuetz, E. R., Krajenbrink, A., Senko, C., Vuletic, V., Greiner, M., & Lukin, M. D. (2016). Atom-by-atom assembly of defect-free one-dimensional cold atom arrays. Science, 354(6315), 1024–1027. https://doi.org/10.1126/science.aah3752
Feynman, R. P. (1982). Simulating physics with computers. International Journal of Theoretical Physics, 21(6), 467–488. https://doi.org/10.1007/BF02650179
Figgatt, C., Maslov, D., Landsman, K. A., Linke, N. M., Debnath, S., & Monroe, C. (2017). Complete 3-Qubit Grover search on a programmable quantum computer. Nature Communications, 8(1), 1918. https://doi.org/10.1038/s41467-017-01904-7
Gaebler, J. P., Tan, T. R., Lin, Y., Wan, Y., Bowler, R., Keith, A. C., Glancy, S., Coakley, K., Knill, E., Leibfried, D., & Wineland, D. J. (2016). High-Fidelity Universal Gate Set for ${^{9}mathrm{Be}}^{+}$ Ion Qubits. Physical Review Letters, 117(6), 060505. https://doi.org/10.1103/PhysRevLett.117.060505
Harty, T. P., Allcock, D. T. C., Ballance, C. J., Guidoni, L., Janacek, H. A., Linke, N. M., Stacey, D. N., & Lucas, D. M. (2014). High-Fidelity Preparation, Gates, Memory, and Readout of a Trapped-Ion Quantum Bit. Physical Review Letters, 113(22), 220501. https://doi.org/10.1103/PhysRevLett.113.220501
Huang, W., Yang, C. H., Chan, K. W., Tanttu, T., Hensen, B., Leon, R. C. C., Fogarty, M. A., Hwang, J. C. C., Hudson, F. E., Itoh, K. M., Morello, A., Laucht, A., & Dzurak, A. S. (2019). Fidelity benchmarks for two-qubit gates in silicon. Nature, 569(7757), 532–536. https://doi.org/10.1038/s41586-019-1197-0
IBM’s Roadmap For Scaling Quantum Technology. (2020, September 15). IBM Research Blog. https://www.ibm.com/blogs/research/2020/09/ibm-quantum-roadmap/
Introducing the World’s Most Powerful Quantum Computer. (n.d.). IonQ. Retrieved August 20, 2021, from https://ionq.com/posts/october-01-2020-introducing-most-powerful-quantum-computer
Ito, T., Otsuka, T., Nakajima, T., Delbecq, M. R., Amaha, S., Yoneda, J., Takeda, K., Noiri, A., Allison, G., Ludwig, A., Wieck, A. D., & Tarucha, S. (2018). Four single-spin Rabi oscillations in a quadruple quantum dot. ArXiv:1805.06111 [Cond-Mat]. http://arxiv.org/abs/1805.06111
Jaksch, D., Cirac, J. I., Zoller, P., Rolston, S. L., Côté, R., & Lukin, M. D. (2000). Fast Quantum Gates for Neutral Atoms. Physical Review Letters, 85(10), 2208–2211. https://doi.org/10.1103/PhysRevLett.85.2208
Jau, Y.-Y., Hankin, A. M., Keating, T., Deutsch, I. H., & Biedermann, G. W. (2016). Entangling atomic spins with a Rydberg-dressed spin-flip blockade. Nature Physics, 12(1), 71–74. https://doi.org/10.1038/nphys3487
Kaufmann, H., Ruster, T., Schmiegelow, C. T., Luda, M. A., Kaushal, V., Schulz, J., von Lindenfels, D., Schmidt-Kaler, F., & Poschinger, U. G. (2017). Fast ion swapping for quantum-information processing. Physical Review A, 95(5), 052319. https://doi.org/10.1103/PhysRevA.95.052319
Kielpinski, D., Monroe, C., & Wineland, D. J. (2002). Architecture for a large-scale ion-trap quantum computer. Nature, 417(6890), 709–711. https://doi.org/10.1038/nature00784
Landig, A. J., Koski, J. V., Scarlino, P., Mendes, U. C., Blais, A., Reichl, C., Wegscheider, W., Wallraff, A., Ensslin, K., & Ihn, T. (2018). Coherent spin–photon coupling using a resonant exchange qubit. Nature, 560(7717), 179–184. https://doi.org/10.1038/s41586-018-0365-y
Leibfried, D., Blatt, R., Monroe, C., & Wineland, D. (2003). Quantum dynamics of single trapped ions. Reviews of Modern Physics, 75(1), 281–324. https://doi.org/10.1103/RevModPhys.75.281
Levine, H., Keesling, A., Semeghini, G., Omran, A., Wang, T. T., Ebadi, S., Bernien, H., Greiner, M., Vuletić, V., Pichler, H., & Lukin, M. D. (2019). Parallel Implementation of High-Fidelity Multiqubit Gates with Neutral Atoms. Physical Review Letters, 123(17), 170503. https://doi.org/10.1103/PhysRevLett.123.170503
Loss, D., & DiVincenzo, D. P. (1998). Quantum computation with quantum dots. Physical Review A, 57(1), 120–126. https://doi.org/10.1103/PhysRevA.57.120
Lukin, M. D., Fleischhauer, M., Cote, R., Duan, L. M., Jaksch, D., Cirac, J. I., & Zoller, P. (2001). Dipole Blockade and Quantum Information Processing in Mesoscopic Atomic Ensembles. Physical Review Letters, 87(3), 037901. https://doi.org/10.1103/PhysRevLett.87.037901
Maller, K. M., Lichtman, M. T., Xia, T., Sun, Y., Piotrowicz, M. J., Carr, A. W., Isenhower, L., & Saffman, M. (2015). Rydberg-blockade controlled-not gate and entanglement in a two-dimensional array of neutral-atom qubits. Physical Review A, 92(2), 022336. https://doi.org/10.1103/PhysRevA.92.022336
Marinescu, D. C. (2016). Complex Systems and Clouds: A Self-Organization and Self-Management Perspective. Morgan Kaufmann.
Monroe, C., Raussendorf, R., Ruthven, A., Brown, K. R., Maunz, P., Duan, L.-M., & Kim, J. (2014). Large-scale modular quantum-computer architecture with atomic memory and photonic interconnects. Physical Review A, 89(2), 022317. https://doi.org/10.1103/PhysRevA.89.022317
Monz, T., Schindler, P., Barreiro, J. T., Chwalla, M., Nigg, D., Coish, W. A., Harlander, M., Haensel, W., Hennrich, M., & Blatt, R. (2011). 14-qubit entanglement: creation and coherence. Physical Review Letters, 106(13), 130506. https://doi.org/10.1103/PhysRevLett.106.130506
Myerson, A. H., Szwer, D. J., Webster, S. C., Allcock, D. T. C., Curtis, M. J., Imreh, G., Sherman, J. A., Stacey, D. N., Steane, A. M., & Lucas, D. M. (2008). High-Fidelity Readout of Trapped-Ion Qubits. Physical Review Letters, 100(20), 200502. https://doi.org/10.1103/PhysRevLett.100.200502
Noek, R., Vrijsen, G., Gaultney, D., Mount, E., Kim, T., Maunz, P., & Kim, J. (2013). High speed, high fidelity detection of an atomic hyperfine qubit. Optics Letters, 38(22), 4735–4738. https://doi.org/10.1364/OL.38.004735
Preskill, J. (2018). Quantum Computing in the NISQ era and beyond. Quantum, 2, 79. https://doi.org/10.22331/q-2018-08-06-79
Ristè, D., da Silva, M. P., Ryan, C. A., Cross, A. W., Córcoles, A. D., Smolin, J. A., Gambetta, J. M., Chow, J. M., & Johnson, B. R. (2017). Demonstration of quantum advantage in machine learning. Npj Quantum Information, 3(1), 16. https://doi.org/10.1038/s41534-017-0017-3
Schäfer, V. M., Ballance, C. J., Thirumalai, K., Stephenson, L. J., Ballance, T. G., Steane, A. M., & Lucas, D. M. (2018). Fast quantum logic gates with trapped-ion qubits. Nature, 555(7694), 75–78. https://doi.org/10.1038/nature25737
Sheldon, S., Bishop, L. S., Magesan, E., Filipp, S., Chow, J. M., & Gambetta, J. M. (2016). Characterizing errors on qubit operations via iterative randomized benchmarking. Physical Review A, 93(1), 012301. https://doi.org/10.1103/PhysRevA.93.012301
Sheldon, S., Magesan, E., Chow, J. M., & Gambetta, J. M. (2016). Procedure for systematically tuning up cross-talk in the cross-resonance gate. Physical Review A, 93(6), 060302. https://doi.org/10.1103/PhysRevA.93.060302
Simmons, C. B., Thalakulam, M., Shaji, N., Klein, L. J., Qin, H., Blick, R. H., Savage, D. E., Lagally, M. G., Coppersmith, S. N., & Eriksson, M. A. (2007). Single-electron quantum dot in Si∕SiGe with integrated charge sensing. Applied Physics Letters, 91(21), 213103. https://doi.org/10.1063/1.2816331
Takita, M., Córcoles, A. D., Magesan, E., Abdo, B., Brink, M., Cross, A., Chow, J. M., & Gambetta, J. M. (2016). Demonstration of Weight-Four Parity Measurements in the Surface Code Architecture. Physical Review Letters, 117(21), 210505. https://doi.org/10.1103/PhysRevLett.117.210505
Tuorila, J., Partanen, M., Ala-Nissila, T., & Möttönen, M. (2017). Efficient protocol for qubit initialization with a tunable environment. Npj Quantum Information, 3(1), 1–12. https://doi.org/10.1038/s41534-017-0027-1
Vandersypen, L. M. K., & Eriksson, M. A. (2019). Quantum computing with semiconductor spins. Physics Today, 72(8), 38–45. https://doi.org/10.1063/PT.3.4270
Wang, D. S., Fowler, A. G., Stephens, A. M., & Hollenberg, L. C. L. (2009). Threshold error rates for the toric and surface codes. ArXiv:0905.0531 [Quant-Ph]. http://arxiv.org/abs/0905.0531
Wang, Y., Kumar, A., Wu, T.-Y., & Weiss, D. S. (2016). Single-qubit gates based on targeted phase shifts in a 3D neutral atom array. Science, 352(6293), 1562–1565. https://doi.org/10.1126/science.aaf2581
Wang, Y., Um, M., Zhang, J., An, S., Lyu, M., Zhang, J.-N., Duan, L.-M., Yum, D., & Kim, K. (2017). Single-qubit quantum memory exceeding ten-minute coherence time. Nature Photonics, 11(10), 646–650. https://doi.org/10.1038/s41566-017-0007-1
Wang, Y., Zhang, X., Corcovilos, T. A., Kumar, A., & Weiss, D. S. (2015). Coherent Addressing of Individual Neutral Atoms in a 3D Optical Lattice. Physical Review Letters, 115(4), 043003. https://doi.org/10.1103/PhysRevLett.115.043003
Xia, T., Lichtman, M., Maller, K., Carr, A. W., Piotrowicz, M. J., Isenhower, L., & Saffman, M. (2015). Randomized Benchmarking of Single-Qubit Gates in a 2D Array of Neutral-Atom Qubits. Physical Review Letters, 114(10), 100503. https://doi.org/10.1103/PhysRevLett.114.100503
Yoneda, J., Takeda, K., Otsuka, T., Nakajima, T., Delbecq, M. R., Allison, G., Honda, T., Kodera, T., Oda, S., Hoshi, Y., Usami, N., Itoh, K. M., & Tarucha, S. (2018). A quantum-dot spin qubit with coherence limited by charge noise and fidelity higher than 99.9%. Nature Nanotechnology, 13(2), 102–106. https://doi.org/10.1038/s41565-017-0014-x
Zajac, D. M., Sigillito, A. J., Russ, M., Borjans, F., Taylor, J. M., Burkard, G., & Petta, J. R. (2018). Resonantly driven CNOT gate for electron spins. Science, 359(6374), 439–442. https://doi.org/10.1126/science.aao5965
Published
How to Cite
Issue
Section
Copyright (c) 2021 Arjun Sen; Kristine Rezai
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Copyright holder(s) granted JSR a perpetual, non-exclusive license to distriute & display this article.