Comparing Qubit Platforms in the Race to Feasible Quantum Computing

Authors

  • Arjun Sen Calcutta International School
  • Kristine Rezai Mentor, Harvard University

DOI:

https://doi.org/10.47611/jsrhs.v10i4.2236

Keywords:

Quantum computing, Qubits

Abstract

Quantum computing is an emerging field that has been attracting a substantial amount of interest in the scientific community lately due to the advantages of quantum information processing. The fundamental unit of quantum information that makes up a quantum computer is a qubit. Several platforms have been proposed as physical realisations of these qubits for the purpose of making quantum computing a feasible technology, yet no one platform has significantly outperformed the others. This literature review discusses the current state of the field of quantum computing, by comparing and contrasting some of the most promising qubit platforms of today. By doing so, this paper analyses each of their feasibilities for full-scale quantum computing in the future and maps out a possible trajectory for how quantum computing may progress in the next few years

Downloads

Download data is not yet available.

References or Bibliography

Angus, S. J., Ferguson, A. J., Dzurak, A. S., & Clark, R. G. (2007). Gate-Defined Quantum Dots in Intrinsic Silicon. Nano Letters, 7(7), 2051–2055. https://doi.org/10.1021/nl070949k

Arute, F., Arya, K., Babbush, R., Bacon, D., Bardin, J. C., Barends, R., Biswas, R., Boixo, S., Brandao, F. G. S. L., Buell, D. A., Burkett, B., Chen, Y., Chen, Z., Chiaro, B., Collins, R., Courtney, W., Dunsworth, A., Farhi, E., Foxen, B., … Martinis, J. M. (2019). Quantum supremacy using a programmable superconducting processor. Nature, 574(7779), 505–510. https://doi.org/10.1038/s41586-019-1666-5

Ballance, C. J., Harty, T. P., Linke, N. M., Sepiol, M. A., & Lucas, D. M. (2016). High-Fidelity Quantum Logic Gates Using Trapped-Ion Hyperfine Qubits. Physical Review Letters, 117(6), 060504. https://doi.org/10.1103/PhysRevLett.117.060504

Barends, R., Quintana, C. M., Petukhov, A. G., Chen, Y., Kafri, D., Kechedzhi, K., Collins, R., Naaman, O., Boixo, S., Arute, F., Arya, K., Buell, D., Burkett, B., Chen, Z., Chiaro, B., Dunsworth, A., Foxen, B., Fowler, A., Gidney, C., … Martinis, J. M. (2019). Diabatic Gates for Frequency-Tunable Superconducting Qubits. Physical Review Letters, 123(21), 210501. https://doi.org/10.1103/PhysRevLett.123.210501

Barredo, D., de Léséleuc, S., Lienhard, V., Lahaye, T., & Browaeys, A. (2016). An atom-by-atom assembler of defect-free arbitrary two-dimensional atomic arrays. Science, 354(6315), 1021–1023. https://doi.org/10.1126/science.aah3778

Bermudez, A., Xu, X., Nigmatullin, R., O’Gorman, J., Negnevitsky, V., Schindler, P., Monz, T., Poschinger, U. G., Hempel, C., Home, J., Schmidt-Kaler, F., Biercuk, M., Blatt, R., Benjamin, S., & Müller, M. (2017). Assessing the Progress of Trapped-Ion Processors Towards Fault-Tolerant Quantum Computation. Physical Review X, 7(4), 041061. https://doi.org/10.1103/PhysRevX.7.041061

Bernien, H., Schwartz, S., Keesling, A., Levine, H., Omran, A., Pichler, H., Choi, S., Zibrov, A. S., Endres, M., Greiner, M., Vuletić, V., & Lukin, M. D. (2017). Probing many-body dynamics on a 51-atom quantum simulator. Nature, 551(7682), 579–584. https://doi.org/10.1038/nature24622

Chiaverini, J., Blakestad, R. B., Britton, J., Jost, J. D., Langer, C., Leibfried, D., Ozeri, R., & Wineland, D. J. (2005). Surface-electrode architecture for ion-trap quantum information processing. Quantum Information and Computation, 5(6), 419–439. https://doi.org/10.26421/QIC5.6-1

Cirac, J. I., & Zoller, P. (1995). Quantum Computations with Cold Trapped Ions. Physical Review Letters, 74(20), 4091–4094. https://doi.org/10.1103/PhysRevLett.74.4091

Crain, S., Cahall, C., Vrijsen, G., Wollman, E. E., Shaw, M. D., Verma, V. B., Nam, S. W., & Kim, J. (2019). High-Speed Low-Crosstalk Detection of a $^{171}$Yb$^+$ Qubit using Superconducting Nanowire Single Photon Detectors. ArXiv:1902.04059 [Quant-Ph]. http://arxiv.org/abs/1902.04059

Debnath, S., Linke, N. M., Figgatt, C., Landsman, K. A., Wright, K., & Monroe, C. (2016). Demonstration of a small programmable quantum computer with atomic qubits. Nature, 536(7614), 63–66. https://doi.org/10.1038/nature18648

DiVincenzo, D. P. (2000). The Physical Implementation of Quantum Computation. Fortschritte Der Physik, 48(9–11), 771–783. https://doi.org/10.1002/1521-3978(200009)48:9/11<771::AID-PROP771>3.0.CO;2-E

Endres, M., Bernien, H., Keesling, A., Levine, H., Anschuetz, E. R., Krajenbrink, A., Senko, C., Vuletic, V., Greiner, M., & Lukin, M. D. (2016). Atom-by-atom assembly of defect-free one-dimensional cold atom arrays. Science, 354(6315), 1024–1027. https://doi.org/10.1126/science.aah3752

Feynman, R. P. (1982). Simulating physics with computers. International Journal of Theoretical Physics, 21(6), 467–488. https://doi.org/10.1007/BF02650179

Figgatt, C., Maslov, D., Landsman, K. A., Linke, N. M., Debnath, S., & Monroe, C. (2017). Complete 3-Qubit Grover search on a programmable quantum computer. Nature Communications, 8(1), 1918. https://doi.org/10.1038/s41467-017-01904-7

Gaebler, J. P., Tan, T. R., Lin, Y., Wan, Y., Bowler, R., Keith, A. C., Glancy, S., Coakley, K., Knill, E., Leibfried, D., & Wineland, D. J. (2016). High-Fidelity Universal Gate Set for ${^{9}mathrm{Be}}^{+}$ Ion Qubits. Physical Review Letters, 117(6), 060505. https://doi.org/10.1103/PhysRevLett.117.060505

Harty, T. P., Allcock, D. T. C., Ballance, C. J., Guidoni, L., Janacek, H. A., Linke, N. M., Stacey, D. N., & Lucas, D. M. (2014). High-Fidelity Preparation, Gates, Memory, and Readout of a Trapped-Ion Quantum Bit. Physical Review Letters, 113(22), 220501. https://doi.org/10.1103/PhysRevLett.113.220501

Huang, W., Yang, C. H., Chan, K. W., Tanttu, T., Hensen, B., Leon, R. C. C., Fogarty, M. A., Hwang, J. C. C., Hudson, F. E., Itoh, K. M., Morello, A., Laucht, A., & Dzurak, A. S. (2019). Fidelity benchmarks for two-qubit gates in silicon. Nature, 569(7757), 532–536. https://doi.org/10.1038/s41586-019-1197-0

IBM’s Roadmap For Scaling Quantum Technology. (2020, September 15). IBM Research Blog. https://www.ibm.com/blogs/research/2020/09/ibm-quantum-roadmap/

Introducing the World’s Most Powerful Quantum Computer. (n.d.). IonQ. Retrieved August 20, 2021, from https://ionq.com/posts/october-01-2020-introducing-most-powerful-quantum-computer

Ito, T., Otsuka, T., Nakajima, T., Delbecq, M. R., Amaha, S., Yoneda, J., Takeda, K., Noiri, A., Allison, G., Ludwig, A., Wieck, A. D., & Tarucha, S. (2018). Four single-spin Rabi oscillations in a quadruple quantum dot. ArXiv:1805.06111 [Cond-Mat]. http://arxiv.org/abs/1805.06111

Jaksch, D., Cirac, J. I., Zoller, P., Rolston, S. L., Côté, R., & Lukin, M. D. (2000). Fast Quantum Gates for Neutral Atoms. Physical Review Letters, 85(10), 2208–2211. https://doi.org/10.1103/PhysRevLett.85.2208

Jau, Y.-Y., Hankin, A. M., Keating, T., Deutsch, I. H., & Biedermann, G. W. (2016). Entangling atomic spins with a Rydberg-dressed spin-flip blockade. Nature Physics, 12(1), 71–74. https://doi.org/10.1038/nphys3487

Kaufmann, H., Ruster, T., Schmiegelow, C. T., Luda, M. A., Kaushal, V., Schulz, J., von Lindenfels, D., Schmidt-Kaler, F., & Poschinger, U. G. (2017). Fast ion swapping for quantum-information processing. Physical Review A, 95(5), 052319. https://doi.org/10.1103/PhysRevA.95.052319

Kielpinski, D., Monroe, C., & Wineland, D. J. (2002). Architecture for a large-scale ion-trap quantum computer. Nature, 417(6890), 709–711. https://doi.org/10.1038/nature00784

Landig, A. J., Koski, J. V., Scarlino, P., Mendes, U. C., Blais, A., Reichl, C., Wegscheider, W., Wallraff, A., Ensslin, K., & Ihn, T. (2018). Coherent spin–photon coupling using a resonant exchange qubit. Nature, 560(7717), 179–184. https://doi.org/10.1038/s41586-018-0365-y

Leibfried, D., Blatt, R., Monroe, C., & Wineland, D. (2003). Quantum dynamics of single trapped ions. Reviews of Modern Physics, 75(1), 281–324. https://doi.org/10.1103/RevModPhys.75.281

Levine, H., Keesling, A., Semeghini, G., Omran, A., Wang, T. T., Ebadi, S., Bernien, H., Greiner, M., Vuletić, V., Pichler, H., & Lukin, M. D. (2019). Parallel Implementation of High-Fidelity Multiqubit Gates with Neutral Atoms. Physical Review Letters, 123(17), 170503. https://doi.org/10.1103/PhysRevLett.123.170503

Loss, D., & DiVincenzo, D. P. (1998). Quantum computation with quantum dots. Physical Review A, 57(1), 120–126. https://doi.org/10.1103/PhysRevA.57.120

Lukin, M. D., Fleischhauer, M., Cote, R., Duan, L. M., Jaksch, D., Cirac, J. I., & Zoller, P. (2001). Dipole Blockade and Quantum Information Processing in Mesoscopic Atomic Ensembles. Physical Review Letters, 87(3), 037901. https://doi.org/10.1103/PhysRevLett.87.037901

Maller, K. M., Lichtman, M. T., Xia, T., Sun, Y., Piotrowicz, M. J., Carr, A. W., Isenhower, L., & Saffman, M. (2015). Rydberg-blockade controlled-not gate and entanglement in a two-dimensional array of neutral-atom qubits. Physical Review A, 92(2), 022336. https://doi.org/10.1103/PhysRevA.92.022336

Marinescu, D. C. (2016). Complex Systems and Clouds: A Self-Organization and Self-Management Perspective. Morgan Kaufmann.

Monroe, C., Raussendorf, R., Ruthven, A., Brown, K. R., Maunz, P., Duan, L.-M., & Kim, J. (2014). Large-scale modular quantum-computer architecture with atomic memory and photonic interconnects. Physical Review A, 89(2), 022317. https://doi.org/10.1103/PhysRevA.89.022317

Monz, T., Schindler, P., Barreiro, J. T., Chwalla, M., Nigg, D., Coish, W. A., Harlander, M., Haensel, W., Hennrich, M., & Blatt, R. (2011). 14-qubit entanglement: creation and coherence. Physical Review Letters, 106(13), 130506. https://doi.org/10.1103/PhysRevLett.106.130506

Myerson, A. H., Szwer, D. J., Webster, S. C., Allcock, D. T. C., Curtis, M. J., Imreh, G., Sherman, J. A., Stacey, D. N., Steane, A. M., & Lucas, D. M. (2008). High-Fidelity Readout of Trapped-Ion Qubits. Physical Review Letters, 100(20), 200502. https://doi.org/10.1103/PhysRevLett.100.200502

Noek, R., Vrijsen, G., Gaultney, D., Mount, E., Kim, T., Maunz, P., & Kim, J. (2013). High speed, high fidelity detection of an atomic hyperfine qubit. Optics Letters, 38(22), 4735–4738. https://doi.org/10.1364/OL.38.004735

Preskill, J. (2018). Quantum Computing in the NISQ era and beyond. Quantum, 2, 79. https://doi.org/10.22331/q-2018-08-06-79

Ristè, D., da Silva, M. P., Ryan, C. A., Cross, A. W., Córcoles, A. D., Smolin, J. A., Gambetta, J. M., Chow, J. M., & Johnson, B. R. (2017). Demonstration of quantum advantage in machine learning. Npj Quantum Information, 3(1), 16. https://doi.org/10.1038/s41534-017-0017-3

Schäfer, V. M., Ballance, C. J., Thirumalai, K., Stephenson, L. J., Ballance, T. G., Steane, A. M., & Lucas, D. M. (2018). Fast quantum logic gates with trapped-ion qubits. Nature, 555(7694), 75–78. https://doi.org/10.1038/nature25737

Sheldon, S., Bishop, L. S., Magesan, E., Filipp, S., Chow, J. M., & Gambetta, J. M. (2016). Characterizing errors on qubit operations via iterative randomized benchmarking. Physical Review A, 93(1), 012301. https://doi.org/10.1103/PhysRevA.93.012301

Sheldon, S., Magesan, E., Chow, J. M., & Gambetta, J. M. (2016). Procedure for systematically tuning up cross-talk in the cross-resonance gate. Physical Review A, 93(6), 060302. https://doi.org/10.1103/PhysRevA.93.060302

Simmons, C. B., Thalakulam, M., Shaji, N., Klein, L. J., Qin, H., Blick, R. H., Savage, D. E., Lagally, M. G., Coppersmith, S. N., & Eriksson, M. A. (2007). Single-electron quantum dot in Si∕SiGe with integrated charge sensing. Applied Physics Letters, 91(21), 213103. https://doi.org/10.1063/1.2816331

Takita, M., Córcoles, A. D., Magesan, E., Abdo, B., Brink, M., Cross, A., Chow, J. M., & Gambetta, J. M. (2016). Demonstration of Weight-Four Parity Measurements in the Surface Code Architecture. Physical Review Letters, 117(21), 210505. https://doi.org/10.1103/PhysRevLett.117.210505

Tuorila, J., Partanen, M., Ala-Nissila, T., & Möttönen, M. (2017). Efficient protocol for qubit initialization with a tunable environment. Npj Quantum Information, 3(1), 1–12. https://doi.org/10.1038/s41534-017-0027-1

Vandersypen, L. M. K., & Eriksson, M. A. (2019). Quantum computing with semiconductor spins. Physics Today, 72(8), 38–45. https://doi.org/10.1063/PT.3.4270

Wang, D. S., Fowler, A. G., Stephens, A. M., & Hollenberg, L. C. L. (2009). Threshold error rates for the toric and surface codes. ArXiv:0905.0531 [Quant-Ph]. http://arxiv.org/abs/0905.0531

Wang, Y., Kumar, A., Wu, T.-Y., & Weiss, D. S. (2016). Single-qubit gates based on targeted phase shifts in a 3D neutral atom array. Science, 352(6293), 1562–1565. https://doi.org/10.1126/science.aaf2581

Wang, Y., Um, M., Zhang, J., An, S., Lyu, M., Zhang, J.-N., Duan, L.-M., Yum, D., & Kim, K. (2017). Single-qubit quantum memory exceeding ten-minute coherence time. Nature Photonics, 11(10), 646–650. https://doi.org/10.1038/s41566-017-0007-1

Wang, Y., Zhang, X., Corcovilos, T. A., Kumar, A., & Weiss, D. S. (2015). Coherent Addressing of Individual Neutral Atoms in a 3D Optical Lattice. Physical Review Letters, 115(4), 043003. https://doi.org/10.1103/PhysRevLett.115.043003

Xia, T., Lichtman, M., Maller, K., Carr, A. W., Piotrowicz, M. J., Isenhower, L., & Saffman, M. (2015). Randomized Benchmarking of Single-Qubit Gates in a 2D Array of Neutral-Atom Qubits. Physical Review Letters, 114(10), 100503. https://doi.org/10.1103/PhysRevLett.114.100503

Yoneda, J., Takeda, K., Otsuka, T., Nakajima, T., Delbecq, M. R., Allison, G., Honda, T., Kodera, T., Oda, S., Hoshi, Y., Usami, N., Itoh, K. M., & Tarucha, S. (2018). A quantum-dot spin qubit with coherence limited by charge noise and fidelity higher than 99.9%. Nature Nanotechnology, 13(2), 102–106. https://doi.org/10.1038/s41565-017-0014-x

Zajac, D. M., Sigillito, A. J., Russ, M., Borjans, F., Taylor, J. M., Burkard, G., & Petta, J. R. (2018). Resonantly driven CNOT gate for electron spins. Science, 359(6374), 439–442. https://doi.org/10.1126/science.aao5965

Published

11-30-2021

How to Cite

Sen, A., & Rezai, K. (2021). Comparing Qubit Platforms in the Race to Feasible Quantum Computing. Journal of Student Research, 10(4). https://doi.org/10.47611/jsrhs.v10i4.2236

Issue

Section

HS Review Articles