Implications of the Neurexin Gene Family in Autism Spectrum Disorder
DOI:
https://doi.org/10.47611/jsrhs.v10i4.2210Keywords:
autism, ASD, severity, risk variants, neurexins, synapsesAbstract
The neurexin gene family, consisting of NRXN1, NRXN2 and NRXN3 are presynaptic cell adhesion molecules and receptors that are needed in the development and differentiation of synaptic function and neural development. When microdeletions and loss of function variations are expressed, they can encode proteins that result in synaptic disruptions and disrupted neurotransmission, leading to a higher risk for developmental disorders and neuropsychiatric conditions. NRXN genes are strong candidate genes linked to ASD risk susceptibility, with all three noted as high confidence risk factors according to the SFARI Gene Database. In this review, we will go over case studies of NRXN mutations in ASD individuals, explain the results and provide insight into incomplete penetrance and further areas of support.
Downloads
References or Bibliography
Togashi, H., Sakisaka, T., & Takai, Y. (2009). Cell adhesion molecules in the central nervous system. Cell adhesion & migration, 3(1), 29–35. https://doi.org/10.4161/cam.3.1.6773
Forrest, M. P., & Penzes, P. (2020). Autism Genetics: Over 100 Risk Genes and Counting. Pediatric neurology briefs, 34, 13. https://doi.org/10.15844/pedneurbriefs-34-13
Chaste, P., & Leboyer, M. (2012). Autism risk factors: genes, environment, and gene-environment interactions. Dialogues in clinical neuroscience, 14(3), 281–292. https://doi.org/10.31887/DCNS.2012.14.3/pchaste
De Rubeis, S., He, X., Goldberg, A. et al. Synaptic, transcriptional and chromatin genes disrupted in autism. Nature 515, 209–215 (2014). https://doi.org/10.1038/nature13772
Wang, J., Gong, J., Li, L., Chen, Y., Liu, L., Gu, H., Luo, X., Hou, F., Zhang, J., & Song, R. (2018). Neurexin gene family variants as risk factors for autism spectrum disorder. Autism research : official journal of the International Society for Autism Research, 11(1), 37–43. https://doi.org/10.1002/aur.1881
Reissner, C., Runkel, F., & Missler, M. (2013). Neurexins. Genome biology, 14(9), 213. https://doi.org/10.1186/gb-2013-14-9-213
Ishizuka, K., Yoshida, T., Kawabata, T., Imai, A., Mori, H., Kimura, H., Inada, T., Okahisa, Y., Egawa, J., Usami, M., Kushima, I., Morikawa, M., Okada, T., Ikeda, M., Branko, A., Mori, D., Someya, T., Iwata, N., & Ozaki, N. (2020). Functional characterization of rare NRXN1 variants identified in autism spectrum disorders and schizophrenia. Journal of neurodevelopmental disorders, 12(1), 25. https://doi.org/10.1186/s11689-020-09325-2
Cameli, C., Viggiano, M., Rochat, M. J., Maresca, A., Caporali, L., Fiorini, C., Palombo, F., Magini, P., Duardo, R. C., Ceroni, F., Scaduto, M. C., Posar, A., Seri, M., Carelli, V., Visconti, P., Bacchelli, E., & Maestrini, E. (2021). An increased burden of rare exonic variants in NRXN1 microdeletion carriers is likely to enhance the penetrance for autism spectrum disorder. Journal of cellular and molecular medicine, 25(5), 2459–2470. https://doi.org/10.1111/jcmm.16161
Alfieri, P., Scibelli, F., Sinibaldi, L., Valeri, G., Caciolo, C., Novello, R. L., Novelli, A., Digilio, M. C., Tartaglia, M., & Vicari, S. (2020). Further insight into the neurobehavioral pattern of children carrying the 2p16.3 heterozygous deletion involving NRXN1: Report of five new cases. Genes, brain, and behavior, 19(7), e12687. https://doi.org/10.1111/gbb.12687
Al Shehhi, M., Forman, E. B., Fitzgerald, J. E., McInerney, V., Krawczyk, J., Shen, S., Betts, D. R., Ardle, L. M., Gorman, K. M., King, M. D., Green, A., Gallagher, L., & Lynch, S. A. (2019). NRXN1 deletion syndrome; phenotypic and penetrance data from 34 families. European journal of medical genetics, 62(3), 204–209. https://doi.org/10.1016/j.ejmg.2018.07.015
Gauthier, J., Siddiqui, T. J., Huashan, P., Yokomaku, D., Hamdan, F. F., Champagne, N., Lapointe, M., Spiegelman, D., Noreau, A., Lafrenière, R. G., Fathalli, F., Joober, R., Krebs, M. O., DeLisi, L. E., Mottron, L., Fombonne, E., Michaud, J. L., Drapeau, P., Carbonetto, S., Craig, A. M., … Rouleau, G. A. (2011). Truncating mutations in NRXN2 and NRXN1 in autism spectrum disorders and schizophrenia. Human genetics, 130(4), 563–573. https://doi.org/10.1007/s00439-011-0975-z
Yuan, H., Li, X., Wang, Q., Yang, W., Song, J., Hu, X., & Shen, Y. (2018). A de novo 921 Kb microdeletion at 11q13.1 including neurexin 2 in a boy with developmental delay, deficits in speech and language without autistic behaviors. European journal of medical genetics, 61(10), 607–611. https://doi.org/10.1016/j.ejmg.2018.04.002
, Vaags, A. K., Lionel, A. C., Sato, D., Goodenberger, M., Stein, Q. P., Curran, S., Ogilvie, C., Ahn, J. W., Drmic, I., Senman, L., Chrysler, C., Thompson, A., Russell, C., Prasad, A., Walker, S., Pinto, D., Marshall, C. R., Stavropoulos, D. J., Zwaigenbaum, L., Fernandez, B. A., … Scherer, S. W. (2012). Rare deletions at the neurexin 3 locus in autism spectrum disorder. American journal of human genetics, 90(1), 133–141. https://doi.org/10.1016/j.ajhg.2011.11.025
Yuan, H., Wang, Q., Liu, Y., Yang, W., He, Y., Gusella, J. F., Song, J., & Shen, Y. (2018). A rare exonic NRXN3 deletion segregating with neurodevelopmental and neuropsychiatric conditions in a three-generation Chinese family. American journal of medical genetics. Part B, Neuropsychiatric genetics : the official publication of the International Society of Psychiatric Genetics, 177(6), 589–595. https://doi.org/10.1002/ajmg.b.32673
Béna, F., Bruno, D. L., Eriksson, M., van Ravenswaaij-Arts, C., Stark, Z., Dijkhuizen, T., Gerkes, E., Gimelli, S., Ganesamoorthy, D., Thuresson, A. C., Labalme, A., Till, M., Bilan, F., Pasquier, L., Kitzis, A., Dubourgm, C., Rossi, M., Bottani, A., Gagnebin, M., Sanlaville, D., … Schoumans, J. (2013). Molecular and clinical characterization of 25 individuals with exonic deletions of NRXN1 and comprehensive review of the literature. American journal of medical genetics. Part B, Neuropsychiatric genetics : the official publication of the International Society of Psychiatric Genetics, 162B(4), 388–403. https://doi.org/10.1002/ajmg.b.32148
Redin, C., Brand, H., Collins, R. L., Kammin, T., Mitchell, E., Hodge, J. C., Hanscom, C., Pillalamarri, V., Seabra, C. M., Abbott, M. A., Abdul-Rahman, O. A., Aberg, E., Adley, R., Alcaraz-Estrada, S. L., Alkuraya, F. S., An, Y., Anderson, M. A., Antolik, C., Anyane-Yeboa, K., Atkin, J. F., … Talkowski, M. E. (2017). The genomic landscape of balanced cytogenetic abnormalities associated with human congenital anomalies. Nature genetics, 49(1), 36–45. https://doi.org/10.1038/ng.3720
Published
How to Cite
Issue
Section
Copyright (c) 2022 Nicole Lu; Jesse Lage
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Copyright holder(s) granted JSR a perpetual, non-exclusive license to distriute & display this article.