Anti-seismic Technology in Suspension Bridge Designs: A Review
DOI:
https://doi.org/10.47611/jsrhs.v11i1.2201Keywords:
suspension bridge, seismic devices, tuned mass damper, fluid viscous damper, seismic isolatorAbstract
Suspension bridges are vital transportation infrastructures that support high traffic levels. It is of great importance for suspension bridges to remain operational following hazardous earthquake motions. Seismic devices preserve crucial bridge elements and aid in the control of ground motion response through energy dissipation and damping. This literature review introduces and evaluates the performance of widely-applied anti-seismic technologies such as tuned mass dampers, fluid viscous dampers, and seismic isolators in suspension bridge designs. The paper condenses and compares the results of analytical literature surrounding the effectiveness of seismic devices. Conclusions from current research indicate that the implementation of fluid viscous dampers is optimal for deck displacement damping in suspension bridges. Less effectiveness is found for seismic isolators and almost negligible success is found for tuned mass dampers under high seismic motions. The generalization of the results and the potential performance discrepancies due to spatial variability are noted.
Downloads
References or Bibliography
Agrawal, A. K., & Amjadian, M. (2016). Seismic component devices. In Innovative bridge design handbook (pp. 531-553). Butterworth-Heinemann. doi:10.1016/B978-0-12-800058-8.00020-7
Arioli, G., & Gazzola, F. (2013). Old and new explanations of the Tacoma Narrows Bridge collapse. In Atti XXI Congresso AIMETA, Torino (p. 10).
Billington, D. P., & Deodatis, G. (1995). Performance of the Menai Straits Bridge Before and After Reconstruction. In Restructuring: America and Beyond (pp. 1536-1549). ASCE.
Buonopane, S. G., & Billington, D. P. (1993). Theory and history of suspension bridge design from 1823 to 1940. Journal of Structural Engineering, 119(3), 954-977. doi:10.1061/(asce)0733-9445(1993)119:3(954)
Casciati, F., & Giuliano, F. (2009). Performance of multi-TMD in the towers of suspension bridges. Journal of Vibration and Control, 15(6), 821-847. doi:10.1177/1077546308091455
Chey, M. H., Chase, J. G., Mander, J. B., & Carr, A. J. (2010). Semi‐active tuned mass damper building systems: design. Earthquake engineering & structural dynamics, 39(2), 119-139. doi:10.1002/eqe.934
Erdik, M. O. (2017). State of the art on application, R&D and design rules for seismic isolation and energy dissipation for buildings, bridges and viaducts, cultural heritage and chemical plants in Turkey. In Proceedings of the NZSEE conference. doi:10.37153/2686-7974-2019-16-267-277
Huang, F., Peng, G., & Wang, X. (2019, May). Study on Energy Dissipation of Viscous Damper for Long-Span Suspension Bridges. In IOP Conference Series: Earth and Environmental Science (Vol. 283, No. 1, p. 012054). IOP Publishing. doi:10.1088/1755-1315/283/1/012054
Ingham, T. J., Rodriguez, S. A. N. T. I. A. G. O., Nader, M. A. R. W. A. N., Taucer, F. A. B. I. O., & Seim, C. (1995, December). Seismic retrofit of the golden gate bridge. In Proc., National Seismic Conf. on Bridges and Highways: Progress in Research and Practice. Federal Highway Administration.
Ingham, T. J., Rodriguez, S., & Nader, M. (1997). Nonlinear analysis of the Vincent Thomas Bridge for seismic retrofit. Computers & structures, 64(5-6), 1221-1238. doi:10.1016/s0045-7949(97)00031-x
Javanmardi, A., Ibrahim, Z., Ghaedi, K., Jameel, M., Khatibi, H., & Suhatril, M. (2017). Seismic response characteristics of a base isolated cable-stayed bridge under moderate and strong ground motions. Archives of Civil and Mechanical Engineering, 17(2), 419-432. doi:10.1016/j.acme.2016.12.002
Kitagawa, M. (2004). Technology of the akashi kaikyo bridge. Structural control and health monitoring, 11(2), 75-90. doi:10.1002/stc.31
Laursen, P. T., & Fuglsang, K. (2004). SEISMIC DESIGN OF THE BRIDGE OVER THE CHACAO CHANNEL IN CHILE.
Lee, D., & Taylor, D. P. (2001). Viscous damper development and future trends. The Structural Design of Tall Buildings, 10(5), 311-320. doi:10.1002/tal.188
Lu, G., Wang, K., & Qiu, W. (2020). Fragility-Based Improvement of System Seismic Performance for Long-Span Suspension Bridges. Advances in Civil Engineering, 2020. doi:10.1155/2020/8693729
Meng, F., Wan, J., Xia, Y., Ma, Y., & Yu, J. (2020). A multi-degree of freedom tuned mass damper design for vibration mitigation of a suspension bridge. Applied Sciences, 10(2), 457. doi:10.3390/app10020457
Middlebrook, R. F. (2014). Bay Bridge. STRUCTURE, 26.
Mokrani, B., Tian, Z., Alaluf, D., Meng, F., & Preumont, A. (2017). Passive damping of suspension bridges using multi-degree of freedom tuned mass dampers. Engineering structures, 153, 749-756. doi:10.1016/j.engstruct.2017.10.028
Murudi, M. M., & Mane, S. M. (2004, August). Seismic effectiveness of tuned mass damper (TMD) for different ground motion parameters. In 13th World Conference on Earthquake Engineering.
Nader, M., Manzanarez, R., & Maroney, B. (2000). Seismic design strategy of the new east bay bridge suspension span. In Proceedings of the 12th World Conference on Earthquake Engineering. doi:10.1061/40744(154)10
Naganuma, T., Kitazawa, M., Adachi, Y., & Noguchi, J. (2000). Seismic design and behaviour of the Higashi-Kobe bridge and restoration after the 1995 Kobe earthquake. In 12th World Conference on Earthquake Engineering, Auckland (New Zealand) (p. 56).
NAZMY, A., ABDEL-GHAFFAR, A. M., & MASRI, S. SEISMIC RETROFIT OF THE VINCENT-THOMAS SUSPENSION BRIDGE.
Pavic, A., Armitage, T., Reynolds, P., & Wright, J. (2002). Methodology for modal testing of the Millennium Bridge, London. Proceedings of the Institution of Civil Engineers-Structures and Buildings, 152(2), 111-121. doi:10.1680/stbu.2002.152.2.111
Petroski, H. (2009). Engineering: Tacoma Narrows Bridges. American Scientist, 97(2), 103-107. doi:10.1511/2009.77.103
Poon, D., Shieh, S. S., Joseph, L. M., & Chang, C. (2004, October). Structural design of Taipei 101, the world’s tallest building. In Proceedings of the CTBUH 2004 Seoul Conference, Seoul, Korea (pp. 271-278).
Raheem, S. E. A., Hayashikawa, T., & Dorka, U. (2011). Ground motion spatial variability effects on seismic response control of cable-stayed bridges. Earthquake Engineering and Engineering Vibration, 10(1), 37. doi:10.1007/s11803-011-0045-5
Ren, W. X., Blandford, G. E., & Harik, I. E. (2004). Roebling suspension bridge. I: Finite-element model and free vibration response. Journal of Bridge Engineering, 9(2), 110-118. doi:10.1061/(asce)1084-0702(2004)9:2(110)
Seismic Retrofit Construction Project. (n.d.). Golden Gate Bridge Highway & Transportation District. Retrieved August 8, 2021, from https://www.goldengate.org/district/district-projects/seismic-retrofit/
Tao, J. R., & Treyger, S. (2014). Seismic Design of Cable-Supported Bridges. SEISMIC DESIGN, 381. doi:10.1201/b15663-16
Turer, A., & Özden, B. (2008). Seismic base isolation using low-cost Scrap Tire Pads (STP). Materials and Structures, 41(5), 891-908 doi:10.1617/s11527-007-9292-3
Vader, T. S., & McDaniel, C. C. (2007). Influence of dampers on seismic response of cable-supported bridge towers. Journal of Bridge Engineering, 12(3), 373-379. doi:10.1061/(asce)1084-0702(2007)12:3(373)
Published
How to Cite
Issue
Section
Copyright (c) 2023 Seewoo Lee; Tahneen Neelam
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Copyright holder(s) granted JSR a perpetual, non-exclusive license to distriute & display this article.