High Throughput in Silico Identification of α-Syn Aggregation Inhibitors for Parkinson's Disease
DOI:
https://doi.org/10.47611/jsrhs.v10i4.2096Keywords:
Alpha Synuclein, Parkinson's Disease, Molecular Docking, Treatment Identification, High Throughput ScreeningAbstract
Parkinson’s Disease (PD) is caused by the depletion of dopamine as a result of aggregates formed by a protein called alpha-synuclein (a-syn), which are toxic and kill dopamine neurons in the substantia nigra pars compacta brain region. PD currently only has some symptomatic treatments that lose effectiveness over time. The purpose of this study was to identify drugs that bind to the fibril forming segment of the non-amyloid beta component (NAC) domain of neuronal membrane bound a-syn. These drugs will inhibit other a-syn monomers from binding and prevent further a-syn aggregation, slowing the progression of PD.
Molecular docking was used to run a high throughput screening of 646 FDA approved drugs. The interactions between each drug and a-syn were analyzed and compared to those of Baicalein and SynuClean-D, two drugs that can inhibit a-syn aggregation by binding with the NAC domain but are not FDA approved.
13 drugs were identified that can potentially be used to inhibit membrane bound a-syn aggregation and were almost 6 times more potent than Baicalein and 10 times more potent than SynuClean-D at binding with a-syn’s NAC domain. The Blood Brain Barrier (BBB) penetrability of these top 13 drugs was assessed, indicating the drugs with a higher likelihood of penetrating the BBB. The results of this study appoint Telmisartan and Ibrutinib as FDA approved, BBB penetrable drugs that could inhibit membrane bound a-syn aggregation, slowing the progression of PD. Verifying these results through in vitro experiments can result in identifying a promising treatment for PD.
Downloads
References or Bibliography
Banks, W. A. (2009). Characteristics of compounds that cross the blood-brain barrier. BMC Neurology, 9(Suppl 1), S3. https://doi.org/10.1186/1471-2377-9-s1-s3
Bisaglia, M., Trolio, A., Bellanda, M., Bergantino, E., Bubacco, L., & Mammi, S. (2006). Structure and topology of the non-amyloid-β component fragment of human α-synuclein bound to micelles: Implications for the aggregation process. Protein Science, 15(6), 1408–1416. https://doi.org/10.1110/ps.052048706
Cumming, H., & Rücker, C. (2017). Octanol–Water Partition Coefficient Measurement by a Simple1H NMR Method. ACS Omega, 2(9), 6244–6249. https://doi.org/10.1021/acsomega.7b01102
Daneman, R., & Prat, A. (2015). The Blood–Brain Barrier. Cold Spring Harbor Perspectives in Biology, 7(1), a020412. https://doi.org/10.1101/cshperspect.a020412
DeMaagd, G., & Philip, A. (2015). Parkinson’s Disease and Its Management: Part 1: Disease Entity, Risk Factors, Pathophysiology, Clinical Presentation, and Diagnosis. P & T : A Peer-Reviewed Journal for Formulary Management, 40(8), 504–532. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4517533/
Dotiwala, A. K., McCausland, C., & Samra, N. S. (2020, September 17). Anatomy, Head and Neck, Blood Brain Barrier. Nih.gov; StatPearls Publishing. https://www.ncbi.nlm.nih.gov/books/NBK519556/#:~:text=The %20blood%2Dbrain %20barrier%20is,%2C%20i.e.%2C%20projections%20of%20astrocytes.
Du, X., Li, Y., Xia, Y.-L., Ai, S.-M., Liang, J., Sang, P., … Liu, S.-Q. (2016). Insights into Protein–Ligand Interactions: Mechanisms, Models, and Methods. International Journal of Molecular Sciences, 17(2), 144. https://doi.org/10.3390/ijms17020144
Discovery Studio Modeling Environment, Release 4.5. 2015. BIOVIA, Dassault Systèmes, San Diego.
Emamzadeh, F. (2016). Alpha-synuclein structure, functions, and interactions. Journal of Research in Medical Sciences, 21(1), 29. https://doi.org/10.4103/1735-1995.181989
Guex, N. and Peitsch, M.C. (1997) SWISS-MODEL and the Swiss-PdbViewer: An environment for comparative protein modeling. Electrophoresis 18, 2714-2723.
Han, D., Zheng, W., Wang, X., & Chen, Z. (2020). Proteostasis of α-Synuclein and Its Role in the Pathogenesis of Parkinson’s Disease. Frontiers in Cellular Neuroscience, 14. https://doi.org/10.3389/fncel.2020.00045
Hijaz, B. A., & Volpicelli-Daley, L. A. (2020). Initiation and propagation of α-synuclein aggregation in the nervous system. Molecular Neurodegeneration, 15(1). https://doi.org/10.1186/s13024-020-00368-6
Hu, Q., Uversky, V. N., Huang, M., Kang, H., Xu, F., Liu, X., … Zhu, S. (2016). Baicalein inhibits α-synuclein oligomer formation and prevents progression of α-synuclein -accumulation in a rotenone mouse model of Parkinson’s disease. Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease, 1862(10), 1883– 1890. https://doi.org/10.1016/j.bbadis.2016.07.008
Jao, C. C., Hegde, B. G., Chen, J., Haworth, I. S., & Langen, R. (2008). Structure of membrane- bound -synuclein from site-directed spin labeling and computational refinement. Proceedings of the National Academy of Sciences, 105(50), 19666–19671. https://doi.org/10.1073/pnas.0807826105
K., A. (2011). Thermodynamics of Ligand-Protein Interactions: Implications for Molecular Design. Thermodynamics - Interaction Studies - Solids, Liquids and Gases. https://doi.org/10.5772/19447
Lashuel, H. A., Overk, C. R., Oueslati, A., & Masliah, E. (2012). The many faces of α-synuclein: from structure and toxicity to therapeutic target. Nature Reviews Neuroscience, 14(1), 38–48. https://doi.org/10.1038/nrn3406
Ligand Binding Efficiency: Trends, Physical Basis, and Implications. (2020). Acs.org. https://pubs.acs.org/doi/10.1021/jm701255b
Meade, R. M., Fairlie, D. P., & Mason, J. M. (2019). Alpha-synuclein structure and Parkinson’s disease – lessons and emerging principles. Molecular Neurodegeneration, 14(1). https://doi.org/10.1186/s13024-019-0329-1
Meng, X. Y., Zhang, H. X., Mezei, M., & Cui, M. (2011). Molecular docking: a powerful approach for structure- based drug discovery. Current computer-aided drug design, 7(2), 146–157. https://doi.org/10.2174/157340911795677602
Mikitsh, J. L., & Chacko, A.-M. (2014). Pathways for Small Molecule Delivery to the Central Nervous System across the Blood-Brain Barrier. Perspectives in Medicinal Chemistry, 6, PMC.S13384. https://doi.org/10.4137/pmc.s13384
Morris, G. M., Huey, R., Lindstrom, W., Sanner, M. F., Belew, R. K., Goodsell, D. S. and Olson, A. J. (2009) Autodock4 and AutoDockTools4: automated docking with selective receptor flexiblity. J. Computational Chemistry 2009, 16: 2785-91
N. M. O'Boyle, M. Banck, C. A. James, C. Morley, T. Vandermeersch, and G. R. Hutchison. 2011. Open Babel: An open chemical toolbox. Journal of Cheminformatics. 3(33).
Obeso, J. A., Stamelou, M., Goetz, C. G., Poewe, W., Lang, A. E., Weintraub, D., Burn, D., Halliday, G. M., Bezard, E., Przedborski, S., Lehericy, S., Brooks, D. J., Rothwell, J.
C., Hallett, M., DeLong, M. R., Marras, C., Tanner, C. M., Ross, G. W., Langston, J. W., & Klein, C. (2017). Past, present, and future of Parkinson’s disease: A special essay on the 200th Anniversary of the Shaking Palsy. Movement Disorders, 32(9), 1264–1310. https://doi.org/10.1002/mds.27115
O. Trott, A. J. Olson, AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization and multithreading, Journal of Computational Chemistry 31 (2010) 455-461
Outeiro, T. F. (2017). Alpha-Synuclein. Reference Module in Neuroscience and Biobehavioral Psychology. https://doi.org/10.1016/b978-0-12-809324-5.00471-5
Pajouhesh, H., & Lenz, G. R. (2005). Medicinal chemical properties of successful central nervous system drugs. NeuroRX, 2(4), 541–553. https://doi.org/10.1602/neurorx.2.4.541
Pandit, R., Chen, L., & Götz, J. (2020). The blood-brain barrier: Physiology and strategies for drug delivery. Advanced Drug Delivery Reviews, 165-166, 1–14. https://doi.org/10.1016/j.addr.2019.11.009
Patil, R., Das, S., Stanley, A., Yadav, L., Sudhakar, A., & Varma, A. K. (2010). Optimized Hydrophobic Interactions and Hydrogen Bonding at the Target-Ligand Interface Leads the Pathways of Drug-Designing. PLoS ONE, 5(8), e12029. https://doi.org/10.1371/journal.pone.0012029
Powers, R., Lei, S., Anandhan, A., Marshall, D., Worley, B., Cerny, R., … Franco, R. (2017). Metabolic Investigations of the Molecular Mechanisms Associated with Parkinson’s Disease. Metabolites, 7(2), 22. https://doi.org/10.3390/metabo7020022
Pujols, J., Peña-Díaz, S., Lázaro, D. F., Peccati, F., Pinheiro, F., González, D., … Ventura, S. (2018). Small molecule inhibits α-synuclein aggregation, disrupts amyloid fibrils, and prevents degeneration of dopaminergic neurons. Proceedings of the National Academy of Sciences, 115(41), 10481–10486. https://doi.org/10.1073/pnas.1804198115
Stefanis, L., Emmanouilidou, E., Pantazopoulou, M., Kirik, D., Vekrellis, K., & Tofaris, G. K. (2019). How is alpha‐synuclein cleared from the cell? Journal of Neurochemistry, 150(5), 577–590. https://doi.org/10.1111/jnc.14704
Thanvi, B. R. (2004). Long term motor complications of levodopa: clinical features, mechanisms, and management strategies. Postgraduate Medical Journal, 80(946), 452– 458. https://doi.org/10.1136/pgmj.2003.013912
Trott, O., & Olson, A. J. (2009). AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. Journal of Computational Chemistry, NA-NA. https://doi.org/10.1002/jcc.21334
Tremblay, M.-E., Cookson, M. R., & Civiero, L. (2019). Glial phagocytic clearance in Parkinson’s disease. Molecular Neurodegeneration, 14(1). https://doi.org/10.1186/s13024- 019-0314-8
Wong, Y. C., & Krainc, D. (2017). α-synuclein toxicity in neurodegeneration: mechanism and therapeutic strategies. Nature Medicine, 23(2), 1–13. https://doi.org/10.1038/nm.4269
9: How Delocalized Electrons Affect pKa Values. (2014, August 30). Chemistry LibreTexts. https://chem.libretexts.org/Bookshelves/Organic_Chemistry/Map %3A_Essential_Organic_Chemistry_(Bruice)/07%3A_Delocalized_Electrons_and_Their_Effect_on_Stability_Reactivity_and_pKa_(Ultraviolet_and_Visible_Spectroscopy)/7.09%3A_How_Delocalized_Electrons_Affect_pKa_Values
Published
How to Cite
Issue
Section
Copyright (c) 2021 Amrutha Srivatsav; Palos Verdes Peninsula High School Faculty
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Copyright holder(s) granted JSR a perpetual, non-exclusive license to distriute & display this article.