The Evolution and Recent Progress in the Field of Synthetic Immunology
DOI:
https://doi.org/10.47611/jsrhs.v10i3.2093Keywords:
Synthetic Biology, CAR, T-CellAbstract
Synthetic immunology is a field in which researchers design constructs that will help immune cells battle pathogens, most commonly cancer cells. This is particularly crucial for human health due to the considerable number of ways that invaders (to the body) possess to minimize the effectiveness of the immune system. Frequently, these changes take place in the form of developing more advanced synthetic receptors for better recognition of pathogens so that T-cells can execute more precise functions in the body. Other changes are also made to give researchers more control over the advancements that have been inserted into the body, heightening the level of safety for the patients who receive them. Considering the newfound research that has been conducted, this paper focuses on the significance of upgrading various parts of the immune system in terms of the way that they can help protect the body. It also highlights the extensive potential this field has in the future considering the adaptability and functionality of the current, newly-designed systems in place.
Downloads
References or Bibliography
References
Alipour et al., A. (n.d.). Viral Delivery of CAR Targets to Solid Tumors Enables Effective Cell Therapy. Molecular Therapy: Oncolytics, 17. https://doi.org/10.1016/j.omto.2020.03.018.
Baeuerle, P. A., Ding, J., Patel, E., Thorausch, N., Horton, H., Gierut, J., … Hofmeister, R. (2019). Synthetic TRuC receptors engaging the complete T cell receptor for potent anti-tumor response. Nature Communications, 10(1). https://doi.org/10.1038/s41467-019-10097-0
Calmeiro, J., Carrascal, M. A., Tavares, A. R., Ferreira, D. A., Gomes, C., Falcão, A., … Neves, B. M. (2020). Dendritic Cell Vaccines for Cancer Immunotherapy: The Role of Human Conventional Type 1 Dendritic Cells. Pharmaceutics, 12(2), 158. doi:10.3390/pharmaceutics12020158
Chang, Z., Lorenzini, M., Chen, X. et al. Rewiring T-cell responses to soluble factors with chimeric antigen receptors. Nat Chem Biol 14, 317–324 (2018). https://doi.org/10.1038/nchembio.2565
Chakravarti, D., Caraballo, L. D., Weinberg, B. H., & Wong, W. W. (2019). Inducible Gene Switches with Memory in Human T Cells for Cellular Immunotherapy. ACS Synthetic Biology, 8(8), 1744–1754. https://doi.org/10.1021/ acssynbio.8b00512
Cho, J. H., Collins, J. J., & Wong, W. W. (2018). Universal Chimeric Antigen Receptors for Multiplexed and Logical Control of T Cell Responses. Cell, 173(6), 1426–1438.e11. https://doi.org/10.1016/j.cell.2018.03.038
Choe, J. H., Watchmaker, P. B., Simic, M. S., Gilbert, R. D., Li, A. W., Krasnow, N. A., Downey, K. M., Yu, W., Carrera, D. A., Celli, A., Cho, J., Briones, J. D., Duecker, J. M., Goretsky, Y. E., Dannenfelser, R., Cardarelli, L., Troyanskaya, O., Sidhu, S. S., Roybal, K. T., Okada, H., … Lim, W. A. (2021). SynNotch-CAR T cells overcome challenges of specificity, heterogeneity, and persistence in treating glioblastoma. Science translational medicine, 13(591), eabe7378. https://doi.org/10.1126/scitranslmed.abe7378
Choe, J. H., Williams, J. Z., & Lim, W. A. (2020). Engineering T Cells to Treat Cancer: The Convergence of Immuno-Oncology and Synthetic Biology. Annual Review of Cancer Biology, 4(1), 121–139. https://doi.org/10.1146/annurev-cancerbio-030419-033657
Hernandez-Lopez, R. A., Yu, W., Cabral, K., Creasey, O., del Pilar Lopez Pazmino, M., Tonai, Y., De Guzman, A., Mäkelä, A., Saksela, K., Gartner, Z. J., & Lim, W. A. (2021). T cell circuits that sense antigen density with an ultrasensitive threshold. BioRxiv, 2021.01.21.427654. https://doi.org/10.1101/2021.01.21.427654
Herzig, E., Kim, K. C., Packard, T. A., Vardi, N., Schwarzer, R., Gramatica, A., Deeks, S. G., Williams, S. R., Landgraf, K., Killeen, N., Martin, D. W., Weinberger, L. S., & Greene, W. C. (2019). Attacking Latent HIV with convertibleCAR-T Cells, a Highly Adaptable Killing Platform. Cell, 179(4), 880–894.e10. https://doi.org/10.1016 /j.cell.2019.10.002
Hyrenius-Wittsten, A., Su, Y., Park, M., Garcia, J. M., Alavi, J., Perry, N., Montgomery, G., Liu, B., & Roybal, K. T. (2021). SynNotch CAR circuits enhance solid tumor recognition and promote persistent antitumor activity in mouse models. Science translational medicine, 13(591), eabd8836. https://doi.org/10.1126/scitranslmed.abd8836
InformedHealth.org [Internet]. Cologne, Germany: Institute for Quality and Efficiency in Health Care (IQWiG); 2006-. What are the organs of the immune system? [Updated 2020 Jul 30]. Available from: https://www.ncbi.nlm.nih.g ov/books/NBK279395/
Kuwana, Y., Asakura, Y., Utsunomiya, N., Nakanishi, M., Arata, Y., Itoh, S., Nagase, F., & Kurosawa, Y. (1987). Expression of chimeric receptor composed of immunoglobulin-derived V regions and T-cell receptor-derived C regions. Biochemical and biophysical research communications, 149(3), 960–968. https://doi.org/10.1016/0006-291x(87)90502-x
Mo, F., Watanabe, N., McKenna, M.K. et al. Engineered off-the-shelf therapeutic T cells resist host immune rejection. Nat Biotechnol 39, 56–63 (2021). https://doi.org/10.1038/s41587-020-0601-5
Morsut, L., Roybal, K. T., Xiong, X., Gordley, R. M., Coyle, S. M., Thomson, M., & Lim, W. A. (2016). Engineering Customized Cell Sensing and Response Behaviors Using Synthetic Notch Receptors. Cell, 164(4), 780–791. https://doi.org/10.1016/j.cell.2016.01.012
Nikitina, M.Y., Ponomareva, A.A., Daminova, A.G. et al. Viability, Ultrastructure, and Migration Activity of Neutrophils after Phagocytosis of Synthetic Microcapsules. Cell Tiss. Biol. 14, 275–285 (2020). https://doi.org/10.1134/S1990519X20040069
Poltavets, A. S., Vishnyakova, P. A., Elchaninov, A. V., Sukhikh, G. T., & Fatkhudinov, T. K. (2020). Macrophage Modification Strategies for Efficient Cell Therapy. Cells, 9(6), 1535. doi:10.3390/cells9061535
Roth et al., Pooled Knockin Targeting for Genome Engineering of Cellular Immunotherapies, Cell (2020), https://doi.org/10.1016/j.cell.2020.03.039
Roybal, K. T., & Lim, W. A. (2017). Synthetic Immunology: Hacking Immune Cells to Expand Their Therapeutic Capabilities. Annual review of immunology, 35, 229–253. https://doi.org/10.1146/annurev-immunol-051116-052302
Roybal, K. T., Rupp, L. J., Morsut, L., Walker, W. J., McNally, K. A., Park, J. S., & Lim, W. A. (2016). Precision Tumor Recognition by T Cells With Combinatorial Antigen-Sensing Circuits. Cell, 164(4), 770–779. https://doi.org/10.1016/j.cell.2016.01.011
Roybal, K. T., Puchner, E. M., Onuffer, J., & Lim, W. A. (2015). Remote control of therapeutic T cells through a small molecule-gated chimeric receptor. Science (New York, N.Y.), 350(6258), aab4077. https://doi.org/10.1126/science.aab4077
Roybal, K. T., Williams, J. Z., Morsut, L., Rupp, L. J., Kolinko, I., Choe, J. H., Walker, W. J., McNally, K. A., & Lim, W. A. (2016). Engineering T Cells with Customized Therapeutic Response Programs Using Synthetic Notch Receptors. Cell, 167(2), 419–432.e16. https://doi.org/10.1016/j.cell.2016.09.011
Rupp, L.J., Schumann, K., Roybal, K.T. et al. CRISPR/Cas9-mediated PD-1 disruption enhances anti-tumor efficacy of human chimeric antigen receptor T cells. Sci Rep 7, 737 (2017). https://doi.org/10.1038/s41598-017-00462-8 Wu, C.
Williams, J. Z., Allen, G. M., Shah, D., Sterin, I. S., Kim, K. H., Garcia, V. P., Shavey, G. E., Yu, W., Puig-Saus, C., Tsoi, J., Ribas, A., Roybal, K. T., & Lim, W. A. (2020). Precise T cell recognition programs designed by transcriptionally linking multiple receptors. Science (New York, N.Y.), 370(6520), 1099–1104. https://doi.org/10.1126/science.abc6270
Wu, C. Y., Roybal, K. T., Puchner, E. M., Onuffer, J., & Lim, W. A. (2015). Remote control of therapeutic T cells through a small molecule-gated chimeric receptor. Science (New York, N.Y.), 350(6258), aab4077. https://doi.org/10.1126/science.aab4077
Yamamoto, T. N., Lee, P. H., Vodnala, S. K., Gurusamy, D., Kishton, R. J., Yu, Z., Eidizadeh, A., Eil, R., Fioravanti, J., Gattinoni, L., Kochenderfer, J. N., Fry, T. J., Aksoy, B. A., Hammerbacher, J. E., Cruz, A. C., Siegel,
R. M., Restifo, N. P., & Klebanoff, C. A. (2019). T cells genetically engineered to overcome death signaling enhance adoptive cancer immunotherapy. The Journal of clinical investigation, 129(4), 1551–1565. https://doi.org/10.1172/JCI121491
Page Break
Yang, Z. jie, Yu, Z. yan, Cai, Y. ming, Du, R. rong, & Cai, L. (2020). Engineering of an enhanced synthetic Notch receptor by reducing ligand-independent activation. Communications Biology, 3(1). https://doi.org/10.1038/s42003-020-0848-x
Yu, S., Yi, M., Qin, S., & Wu, K. (2019). Next generation chimeric antigen receptor T cells: safety strategies to overcome toxicity. Molecular cancer, 18(1), 125. https://doi.org/10.1186/s12943-019-1057-4
Published
How to Cite
Issue
Section
Copyright (c) 2021 Amaan Rather; Pavithran Ravindran
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Copyright holder(s) granted JSR a perpetual, non-exclusive license to distriute & display this article.