Instances of Human Genetic Resistance Against Pathogens

Authors

  • Joshua Sampson Middleton High School
  • Pavithran Ravindran

DOI:

https://doi.org/10.47611/jsrhs.v10i4.1971

Keywords:

Pathogen resistance, Natural human variation

Abstract

This paper will review research on genetic mutations in humans that grant resistance against pathogens.  It will describe the characteristics of these genetic traits, which pathogens they grant resistance to, and the mechanism by which these traits provide resistance. It will then discuss the detrimental aspects of these traits, if any, and the potential applications of the genetic resistance mechanisms. Finally, it will cover further research on the genetic trait or pathogen that should be conducted. The following traits will be discussed within this review: sickle cell mutation in the hemoglobin gene and malaria resistance, the Δ32 mutation in the CCR5 gene and HIV resistance, and the erythrocyte silent mutation in the Duffy antigen promoter and malaria resistance. The research conducted on these genetic traits has allowed us to understand more of the pathophysiology of the disease they resist against.

Downloads

Download data is not yet available.

Author Biography

Pavithran Ravindran

Mentor

References or Bibliography

M. Roser and H. Ritchie, “HIV / AIDS,” Our World in Data, Apr. 2018, Accessed: Jul. 19, 2021. [Online]. Available: https://ourworldindata.org/hiv-aids

H. M. Naif, “Pathogenesis of HIV Infection,” Infect. Dis. Rep., vol. 5, no. Suppl 1, p. e6, Jun. 2013.

C. Hedskog, M. Mild, and J. Albert, “Transmission of the X4 phenotype of HIV-1: is there evidence against the ‘random transmission’ hypothesis?,” The Journal of infectious diseases, vol. 205, no. 2. pp. 163–165, Jan. 15, 2012.

F. Barmania and M. S. Pepper, “C-C chemokine receptor type five (CCR5): An emerging target for the control of HIV infection,” Appl Transl Genom, vol. 2, pp. 3–16, Dec. 2013.

P. K. S. Rao, “CCR5 inhibitors: Emerging promising HIV therapeutic strategy,” Indian J Sex Transm Dis AIDS, vol. 30, no. 1, pp. 1–9, Jan. 2009.

E. Enrich et al., “Analysis of the Spanish CCR5-∆32 inventory of cord blood units: lower cell counts in homozygous donors,” Bone Marrow Transplant., vol. 53, no. 6, pp. 741–748, Jun. 2018.

G. B. Huffnagle et al., “Cutting edge: Role of C-C chemokine receptor 5 in organ-specific and innate immunity to Cryptococcus neoformans,” J. Immunol., vol. 163, no. 9, pp. 4642–4646, Nov. 1999.

N. Sato et al., “Defects in the generation of IFN-gamma are overcome to control infection with Leishmania donovani in CC chemokine receptor (CCR) 5-, macrophage inflammatory protein-1 alpha-, or CCR2-deficient mice,” J. Immunol., vol. 163, no. 10, pp. 5519–5525, Nov. 1999.

G. Hütter et al., “Long-term control of HIV by CCR5 Delta32/Delta32 stem-cell transplantation,” N. Engl. J. Med., vol. 360, no. 7, pp. 692–698, Feb. 2009.

K. Allers et al., “Evidence for the cure of HIV infection by CCR5Δ32/Δ32 stem cell transplantation,” Blood, vol. 117, no. 10, pp. 2791–2799, Mar. 2011.

K. Khaddour, C. K. Hana, and P. Mewawalla, “Hematopoietic Stem Cell Transplantation,” in StatPearls, Treasure Island (FL): StatPearls Publishing, 2021.

H.-H. Kuo and M. Lichterfeld, “Recent progress in understanding HIV reservoirs,” Curr. Opin. HIV AIDS, vol. 13, no. 2, pp. 137–142, Mar. 2018.

M. R. López-Huertas et al., “The CCR5-antagonist Maraviroc reverses HIV-1 latency in vitro alone or in combination with the PKC-agonist Bryostatin-1,” Sci. Rep., vol. 7, no. 1, p. 2385, May 2017.

“Maraviroc.” https://medlineplus.gov/druginfo/meds/a607076.html (accessed Jul. 29, 2021).

“Latent HIV Reservoir.” https://clinicalinfo.hiv.gov/en/glossary/latent-hiv-reservoir (accessed Jul. 24, 2021).

Y. Xie, S. Zhan, W. Ge, and P. Tang, “The potential risks of C-C chemokine receptor 5-edited babies in bone development,” Bone Res, vol. 7, p. 4, Jan. 2019.

S. P. Ryder, “#CRISPRbabies: Notes on a Scandal,” CRISPR J, vol. 1, no. 6, pp. 355–357, Dec. 2018.

A. Veres et al., “Low incidence of off-target mutations in individual CRISPR-Cas9 and TALEN targeted human stem cell clones detected by whole-genome sequencing,” Cell Stem Cell, vol. 15, no. 1, pp. 27–30, Jul. 2014.

J. Novembre, A. P. Galvani, and M. Slatkin, “The geographic spread of the CCR5 Delta32 HIV-resistance allele,” PLoS Biol., vol. 3, no. 11, p. e339, Nov. 2005.

J. C. Stephens et al., “Dating the Origin of the CCR5-Δ32 AIDS-Resistance Allele by the Coalescence of Haplotypes,” Am. J. Hum. Genet., vol. 62, no. 6, pp. 1507–1515, Jun. 1998.

S. K. Cohn Jr and L. T. Weaver, “The Black Death and AIDS: CCR5-Delta32 in genetics and history,” QJM, vol. 99, no. 8, pp. 497–503, Aug. 2006.

A. P. Galvani and M. Slatkin, “Evaluating plague and smallpox as historical selective pressures for the CCR5-Delta 32 HIV-resistance allele,” Proc. Natl. Acad. Sci. U. S. A., vol. 100, no. 25, pp. 15276–15279, Dec. 2003.

L. Waters, S. Mandalia, P. Randell, A. Wildfire, B. Gazzard, and G. Moyle, “The impact of HIV tropism on decreases in CD4 cell count, clinical progression, and subsequent response to a first antiretroviral therapy regimen,” Clin. Infect. Dis., vol. 46, no. 10, pp. 1617–1623, May 2008.

The Editors of Encyclopedia Britannica, “Plasmodium,” Encyclopedia Britannica. Sep. 08, 2020. [Online]. Available: https://www.britannica.com/science/Plasmodium-protozoan-genus

R. E. Howes et al., “Global Epidemiology of Plasmodium vivax,” Am. J. Trop. Med. Hyg., vol. 95, no. 6 Suppl, pp. 15–34, Dec. 2016.

World Health Organization, World malaria report 2020: 20 years of global progress and challenges. {World Health Organization}, 2020.

T. Beck, Figure 1, [The malaria parasite life cycle...]. National Center for Biotechnology Information (US), 2006.

B. Campo, O. Vandal, D. L. Wesche, and J. N. Burrows, “Killing the hypnozoite--drug discovery approaches to prevent relapse in Plasmodium vivax,” Pathog. Glob. Health, vol. 109, no. 3, pp. 107–122, May 2015.

B. Singh and C. Daneshvar, “Human infections and detection of Plasmodium knowlesi,” Clin. Microbiol. Rev., vol. 26, no. 2, pp. 165–184, Apr. 2013.

P. W. Hedrick, “Population genetics of malaria resistance in humans,” Heredity , vol. 107, no. 4, pp. 283–304, Oct. 2011.

L. Castilho, “The value of DNA analysis for antigens in the Duffy blood group system,” Transfusion , vol. 47, no. 1 Suppl, p. 28S–31S, Jul. 2007.

C. L. King et al., “Fy(a)/Fy(b) antigen polymorphism in human erythrocyte Duffy antigen affects susceptibility to Plasmodium vivax malaria,” Proc. Natl. Acad. Sci. U. S. A., vol. 108, no. 50, pp. 20113–20118, Dec. 2011.

A. M. Vaughan and S. H. I. Kappe, “Malaria Parasite Liver Infection and Exoerythrocytic Biology,” Cold Spring Harb. Perspect. Med., vol. 7, no. 6, Jun. 2017, doi: 10.1101/cshperspect.a025486.

L. Golassa, L. Amenga-Etego, E. Lo, and A. Amambua-Ngwa, “The biology of unconventional invasion of Duffy-negative reticulocytes by Plasmodium vivax and its implication in malaria epidemiology and public health,” Malar. J., vol. 19, no. 1, p. 299, Aug. 2020.

T. M. Handel and R. Horuk, “Duffy antigen inhibitors: useful therapeutics for malaria?,” Trends Parasitol., vol. 26, no. 7, pp. 329–333, 7/2010.

I. Woolley and K. Horne, “Shooting At the DARC: Potential Issues with Species-Specific Antimalarials,” IDDT, vol. 12, no. 5, pp. 357–359, Nov. 2012.

J. K. Elson, J. L. Beebe-Dimmer, H. Morgenstern, M. Chilkuri, J. Blanchard, and A. B. Lentsch, “The Duffy Antigen/Receptor for Chemokines (DARC) and prostate-cancer risk among Jamaican men,” J. Immigr. Minor. Health, vol. 13, no. 1, pp. 36–41, Feb. 2011.

D. J. Weiss et al., “Mapping the global prevalence, incidence, and mortality of Plasmodium falciparum, 2000-17: a spatial and temporal modelling study,” Lancet, vol. 394, no. 10195, pp. 322–331, Jul. 2019.

“Malaria.” https://www.who.int/news-room/fact-sheets/detail/malaria (accessed Jul. 19, 2021).

P. Sundd, M. T. Gladwin, and E. M. Novelli, “Pathophysiology of Sickle Cell Disease,” Annu. Rev. Pathol., vol. 14, pp. 263–292, Jan. 2019.

L. Gong, S. Parikh, P. J. Rosenthal, and B. Greenhouse, “Biochemical and immunological mechanisms by which sickle cell trait protects against malaria,” Malar. J., vol. 12, p. 317, Sep. 2013.

L. Luzzatto, “Sickle cell anaemia and malaria,” Mediterr. J. Hematol. Infect. Dis., vol. 4, no. 1, p. e2012065, Oct. 2012.

N. M. Archer, N. Petersen, M. A. Clark, C. O. Buckee, L. M. Childs, and M. T. Duraisingh, “Resistance to Plasmodium falciparum in sickle cell trait erythrocytes is driven by oxygen-dependent growth inhibition,” Proc. Natl. Acad. Sci. U. S. A., vol. 115, no. 28, pp. 7350–7355, Jul. 2018.

C. Lansche et al., “The sickle cell trait affects contact dynamics and endothelial cell activation in Plasmodium falciparum-infected erythrocytes,” Commun Biol, vol. 1, p. 211, Nov. 2018.

D. Ashorobi, A. Ramsey, S. N. S. Yarrarapu, and R. Bhatt, “Sickle Cell Trait,” in StatPearls, Treasure Island (FL): StatPearls Publishing, 2021.

M. Hulihan, K. L. Hassell, J. L. Raphael, K. Smith-Whitley, and P. Thorpe, “CDC Grand Rounds: Improving the Lives of Persons with Sickle Cell Disease,” MMWR Morb. Mortal. Wkly. Rep., vol. 66, no. 46, pp. 1269–1271, Nov. 2017.

K. Y. Fong and D. W. Wright, “Hemozoin and antimalarial drug discovery,” Future Med. Chem., vol. 5, no. 12, pp. 1437–1450, Aug. 2013.

M. A. Clark et al., “Plasmodium vivax infection compromises reticulocyte stability,” Nat. Commun., vol. 12, no. 1, p. 1629, Mar. 2021.

P. R. Totino and S. C. Lopes, “Insights into the Cytoadherence Phenomenon of Plasmodium vivax: The Putative Role of Phosphatidylserine,” Front. Immunol., vol. 8, p. 1148, Sep. 2017.

B. Autino, A. Noris, R. Russo, and F. Castelli, “Epidemiology of malaria in endemic areas,” Mediterr. J. Hematol. Infect. Dis., vol. 4, no. 1, p. e2012060, Oct. 2012.

F. B. Piel et al., “Global distribution of the sickle cell gene and geographical confirmation of the malaria hypothesis,” Nat. Commun., vol. 1, p. 104, Nov. 2010.

R. E. Howes et al., “The global distribution of the Duffy blood group,” Nat. Commun., vol. 2, p. 266, 2011.

M. Lipsitch and A. O. Sousa, “Historical intensity of natural selection for resistance to tuberculosis,” Genetics, vol. 161, no. 4, pp. 1599–1607, Aug. 2002.

S. E. Gabriel, K. N. Brigman, B. H. Koller, R. C. Boucher, and M. J. Stutts, “Cystic fibrosis heterozygote resistance to cholera toxin in the cystic fibrosis mouse model,” Science, vol. 266, no. 5182, pp. 107–109, Oct. 1994.

Published

11-30-2021

How to Cite

Sampson, J., & Ravindran, P. (2021). Instances of Human Genetic Resistance Against Pathogens. Journal of Student Research, 10(4). https://doi.org/10.47611/jsrhs.v10i4.1971

Issue

Section

HS Review Articles