A New Frontier in Fighting Brain Cancer: Cutting Edge Magnetic Resonance Imaging Techniques

Authors

  • Phuc Nguyen La Quinta High School
  • Joshua Cain Mentor, University of California, Los Angeles

DOI:

https://doi.org/10.47611/jsrhs.v10i4.1952

Keywords:

Magnetic resonance imaging, brain tumors, Perfusion MRI, Diffusion MRI

Abstract

Of the currently available brain imaging techniques for diagnosing tumors, diffusion-weighted MRI and perfusion MRI are cutting-edge techniques and may provide improved diagnostic capacity compared to traditional techniques such as positron emission tomography. Moreover, they are fully non-invasive and avoid the exposure to radiation. While MRI in general has been used in research and medicine for decades, the more recent development of multi-modal and multiparametric imaging in neuro oncology holds much promise for the enhancement of diagnosis, prognosis, and patient-tailored treatments in this field. This review will evaluate how these various imaging techniques provide clinical value above and beyond previous techniques. 

Downloads

Download data is not yet available.

References or Bibliography

Luo, M., Zhang, L., Jiang, X. H., & Zhang, W. D. (2017). Intravoxel Incoherent Motion Diffusion-weighted Imaging: Evaluation of the Differentiation of Solid Hepatic Lesions. Translational oncology, 10(5), 831–838. https://doi.org/10.1016/j.tranon.2017.08.003

Jensen, J. H., & Helpern, J. A. (2010). MRI quantification of non-Gaussian water diffusion by kurtosis analysis. NMR in biomedicine, 23(7), 698–710. https://doi.org/10.1002/nbm.1518

Essig, M., Shiroishi, M. S., Nguyen, T. B., Saake, M., Provenzale, J. M., Enterline, D., Anzalone, N., Dörfler, A., Rovira, A., Wintermark, M., & Law, M. (2013). Perfusion MRI: the five most frequently asked technical questions. AJR. American journal of roentgenology, 200(1), 24–34. https://doi.org/10.2214/AJR.12.9543

Lindner, T., Ahmeti, H., Juhasz, J., Helle, M., Jansen, O., Synowitz, M., & Ulmer, S. (2018). A comparison of arterial spin labeling and dynamic susceptibility perfusion imaging for resection control in glioblastoma surgery. Oncotarget, 9(26), 18570–18577. https://doi.org/10.18632/oncotarget.24970

Muto, M., Frauenfelder, G., Senese, R., Zeccolini, F., Schena, E., Giurazza, F., & Jäger, H. R. (2018). Dynamic susceptibility contrast (DSC) perfusion MRI in differential diagnosis between radionecrosis and neoangiogenesis in cerebral metastases using rCBV, rCBF and K2. La Radiologia medica, 123(7), 545–552. https://doi.org/10.1007/s11547-018-0866-7

Padhani A.R. Dynamic contrast-enhanced MRI in clinical oncology: Current status and future directions. J Magn Reson Imaging. 2002; 16: 407-422

Wierenga, C. E., Hays, C. C., & Zlatar, Z. Z. (2014). Cerebral blood flow measured by arterial spin labeling MRI as a preclinical marker of Alzheimer's disease. Journal of Alzheimer's disease : JAD, 42 Suppl 4(Suppl 4), S411–S419. https://doi.org/10.3233/JAD-141467

Ma, X., Bai, Y., Lin, Y. et al. Amide proton transfer magnetic resonance imaging in detecting intracranial hemorrhage at different stages: a comparative study with susceptibility weighted imaging. Sci Rep 7, 45696 (2017). https://doi.org/10.1038/srep45696

Sener R. N. (2001). Diffusion MRI: apparent diffusion coefficient (ADC) values in the normal brain and a classification of brain disorders based on ADC values. Computerized medical imaging and graphics : the official journal of the Computerized Medical Imaging Society, 25(4), 299–326. https://doi.org/10.1016/s0895-6111(00)00083-5

Chilla, G. S., Tan, C. H., Xu, C., & Poh, C. L. (2015). Diffusion weighted magnetic resonance imaging and its recent trend-a survey. Quantitative imaging in medicine and surgery, 5(3), 407–422. https://doi.org/10.3978/j.issn.2223-4292.2015.03.01

Surov, A., Meyer, H. J., & Wienke, A. (2017). Correlation between apparent diffusion coefficient (ADC) and cellularity is different in several tumors: a meta-analysis. Oncotarget, 8(35), 59492–59499. https://doi.org/10.18632/oncotarget.17752

Desmoulière, A., Redard, M., Darby, I., & Gabbiani, G. (1995). Apoptosis mediates the decrease in cellularity during the transition between granulation tissue and scar. The American journal of pathology, 146(1), 56–66.

Karameshev, A., Arnold, M., Schroth, G., Kappeler, L., Stein, P., Gralla, J., Brekenfeld, C., Findling, O., Mono, M. L., De Marchis, G. M., Fischer, U., Mattle, H. P., Nedeltchev, K., & El-Koussy, M. (2011). Diffusion-weighted MRI helps predict outcome in basilar artery occlusion patients treated with intra-arterial thrombolysis. Cerebrovascular diseases (Basel, Switzerland), 32(4), 393–400. https://doi.org/10.1159/000330644

A, R., M J, T. B., N, C., M, S., M Gh, H., & Gh, A. (2019). Signal Intensity of High B-value Diffusion-weighted Imaging for the Detection of Prostate Cancer. Journal of biomedical physics & engineering, 9(4), 453–458. https://doi.org/10.31661/jbpe.v0i0.811

Salloum, R., McConechy, M. K., Mikael, L. G., Fuller, C., Drissi, R., DeWire, M., Nikbakht, H., De Jay, N., Yang, X., Boue, D., Chow, L., Finlay, J. L., Gayden, T., Karamchandani, J., Hummel, T. R., Olshefski, R., Osorio, D. S., Stevenson, C., Kleinman, C. L., Majewski, J., … Jabado, N. (2017). Characterizing temporal genomic heterogeneity in pediatric high-grade gliomas. Acta neuropathologica communications, 5(1), 78. https://doi.org/10.1186/s40478-017-0479-8

White, N. S., McDonald, C., Farid, N., Kuperman, J., Karow, D., Schenker-Ahmed, N. M., Bartsch, H., Rakow-Penner, R., Holland, D., Shabaik, A., Bjørnerud, A., Hope, T., Hattangadi-Gluth, J., Liss, M., Parsons, J. K., Chen, C. C., Raman, S., Margolis, D., Reiter, R. E., Marks, L., … Dale, A. M. (2014). Diffusion-weighted imaging in cancer: physical foundations and applications of restriction spectrum imaging. Cancer research, 74(17), 4638–4652. https://doi.org/10.1158/0008-5472.CAN-13-3534

Azzam, H., Mansour, S., Salem, N. et al. Correlative study between ADC value and grading of invasive breast cancer. Egypt J Radiol Nucl Med 51, 12 (2020). https://doi.org/10.1186/s43055-019-0124-6

Lätt, J., Nilsson, M., van Westen, D., Wirestam, R., Ståhlberg, F., & Brockstedt, S. (2009). Diffusion-weighted MRI measurements on stroke patients reveal water-exchange mechanisms in sub-acute ischaemic lesions. NMR in biomedicine, 22(6), 619–628. https://doi.org/10.1002/nbm.1376

Institute of Medicine (US) Committee on Military Nutrition Research. The Role of Protein and Amino Acids in Sustaining and Enhancing Performance. Washington (DC): National Academies Press (US); 1999. 14, Amino Acid and Protein Requirements: Cognitive Performance, Stress, and Brain Function. Available from: https://www.ncbi.nlm.nih.gov/books/NBK224629/

Finelli P. F. (2012). Diagnostic approach to restricted-diffusion patterns on MR imaging. Neurology. Clinical practice, 2(4), 287–293. https://doi.org/10.1212/CPJ.0b013e318278bee1

Hayashida, Y., Hirai, T., Morishita, S., Kitajima, M., Murakami, R., Korogi, Y., Makino, K., Nakamura, H., Ikushima, I., Yamura, M., Kochi, M., Kuratsu, J. I., & Yamashita, Y. (2006). Diffusion-weighted imaging of metastatic brain tumors: comparison with histologic type and tumor cellularity. AJNR. American journal of neuroradiology, 27(7), 1419–1425.

Abdullah, O. M., Gomez, A. D., Merchant, S., Heidinger, M., Poelzing, S., & Hsu, E. W. (2016). Orientation dependence of microcirculation-induced diffusion signal in anisotropic tissues. Magnetic resonance in medicine, 76(4), 1252–1262. https://doi.org/10.1002/mrm.25980

Klatzo I. Presidental address: neuropathological aspects of brain edema. J Neuropathol Exp Neurol 1967;26:1–14

Messina, C., Bignone, R., Bruno, A., Bruno, A., Bruno, F., Calandri, M., Caruso, D., Coppolino, P., Robertis, R., Gentili, F., Grazzini, I., Natella, R., Scalise, P., Barile, A., Grassi, R., & Albano, D. (2020). Diffusion-Weighted Imaging in Oncology: An Update. Cancers, 12(6), 1493. https://doi.org/10.3390/cancers12061493

Pauleit D, Langen KJ, Floeth F, et al. Can the apparent diffusion coefficient be used as a noninvasive parameter to distinguish tumor tissue from peritumoral tissue in cerebral gliomas? J Magn Reson Imaging 2004;20:758–64

Zhang, M., Chen, Y., Cong, X., & Zhao, X. (2018). Utility of intravoxel incoherent motion MRI derived parameters for prediction of aggressiveness in urothelial bladder carcinoma. Journal of magnetic resonance imaging : JMRI, 48(6), 1648–1656. https://doi.org/10.1002/jmri.26165

Suh, J. Y., Cho, G., Song, Y., Lee, C. K., Kang, J. S., Kang, M. R., Park, S. B., Kim, Y. R., & Kim, J. K. (2012). Is apparent diffusion coefficient reliable and accurate for monitoring effects of antiangiogenic treatment in a longitudinal study?. Journal of magnetic resonance imaging : JMRI, 35(6), 1430–1436. https://doi.org/10.1002/jmri.23574

Schneider, M. J., Cyran, C. C., Nikolaou, K., Hirner, H., Reiser, M. F., & Dietrich, O. (2014). Monitoring early response to anti-angiogenic therapy: diffusion-weighted magnetic resonance imaging and volume measurements in colon carcinoma xenografts. PloS one, 9(9), e106970. https://doi.org/10.1371/journal.pone.0106970

Wu, W., & Miller, K. L. (2017). Image formation in diffusion MRI: A review of recent technical developments. Journal of magnetic resonance imaging : JMRI, 46(3), 646–662. https://doi.org/10.1002/jmri.25664

Li, H., Liang, L., Li, A., Hu, Y., Hu, D., Li, Z., & Kamel, I. R. (2017). Monoexponential, biexponential, and stretched exponential diffusion-weighted imaging models: Quantitative biomarkers for differentiating renal clear cell carcinoma and minimal fat angiomyolipoma. Journal of magnetic resonance imaging : JMRI, 46(1), 240–247. https://doi.org/10.1002/jmri.25524

Yang DM, Kim HC, Kim SW, Jahng GH, Won KY, Lim SJ, et al. Prostate cancer: correlation of intravoxel incoherent motion MR parameters with gleason score. Clin Imaging. (2016) 40:445–50. doi: 10.1016/j.clinimag.2016.01.001

Zhang YD, Wang Q, Wu CJ, Wang XN, Zhang J, Liu H, et al. The histogram analysis of diffusion-weighted intravoxel incoherent motion (IVIM) imaging for differentiating the gleason grade of prostate cancer. Eur Radiol. (2015) 25:994–1004. doi: 10.1007/s00330-014-3511-4

Beyhan M, Sade R, Koc E, Adanur S, Kantarci M. The evaluation of prostate lesions with IVIM DWI and MR perfusion parameters at 3T MRI. Radiol Med. (2019) 124:87–93. doi: 10.1007/s11547-018-0930-3

Calamante F. (2013). Arterial input function in perfusion MRI: a comprehensive review. Progress in nuclear magnetic resonance spectroscopy, 74, 1–32. https://doi.org/10.1016/j.pnmrs.2013.04.002

Hectors, S. J., Wagner, M., Besa, C., Bane, O., Dyvorne, H. A., Fiel, M. I., Zhu, H., Donovan, M., & Taouli, B. (2016). Intravoxel incoherent motion diffusion-weighted imaging of hepatocellular carcinoma: Is there a correlation with flow and perfusion metrics obtained with dynamic contrast-enhanced MRI?. Journal of magnetic resonance imaging : JMRI, 44(4), 856–864. https://doi.org/10.1002/jmri.25194

Maximov, I. I., & Vellmer, S. (2019). Isotropically weighted intravoxel incoherent motion brain imaging at 7T. Magnetic resonance imaging, 57, 124–132. https://doi.org/10.1016/j.mri.2018.11.007

Wang, J., Fernández-Seara, M. A., Wang, S., & St Lawrence, K. S. (2007). When perfusion meets diffusion: in vivo measurement of water permeability in human brain. Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism, 27(4), 839–849. https://doi.org/10.1038/sj.jcbfm.9600398

Pang Y, Turkbey B, Bernardo M, Kruecker J, Kadoury S, Merino MJ, et al. Intravoxel incoherent motion MR imaging for prostate cancer: an evaluation of perfusion fraction and diffusion coefficient derived from different b-value combinations. Magn Reson Med. (2013) 69:553–62. doi: 10.1002/mrm.24277

Mao, W., Zhou, J., Zeng, M., Ding, Y., Qu, L., Chen, C., Ding, X., Wang, Y., Fu, C., & Gu, F. (2018). Intravoxel incoherent motion diffusion-weighted imaging for the assessment of renal fibrosis of chronic kidney disease: A preliminary study. Magnetic resonance imaging, 47, 118–124. https://doi.org/10.1016/j.mri.2017.12.010

Jiang J, Fu Y, Hu X, Cui L, Hong Q, Gu X, et al. The value of diffusion-weighted imaging based on monoexponential and biexponential models for the diagnosis of benign and malignant lung nodules and masses. Br J Radiol. (2020) 93:20190400. doi: 10.1259/bjr.20190400

Song M, Yue Y, Jin Y, Guo J, Zuo L, Peng H, et al. Intravoxel incoherent motion and ADC measurements for differentiating benign from malignant thyroid nodules: utilizing the most repeatable region of interest delineation at 3.0 T. Cancer Imaging. (2020) 20:9. doi: 10.1186/s40644-020-0289-2

Chatterjee A, Watson G, Myint E, Sved P, McEntee M, Bourne R. Changes in epithelium, stroma, and lumen space correlate more strongly with gleason pattern and are stronger predictors of prostate ADC changes than cellularity metrics. Radiology. (2015) 277:751–62. doi: 10.1148/radiol.2015142414

Dolgorsuren, E. A., Harada, M., Kanazawa, Y., Abe, T., Otomo, M., Matsumoto, Y., Mizobuchi, Y., & Nakajima, K. (2019). Correlation and Characteristics of Intravoxel Incoherent Motion and Arterial Spin Labeling Techniques Versus Multiple Parameters Obtained on Dynamic Susceptibility Contrast Perfusion MRI for Brain Tumors. The journal of medical investigation : JMI, 66(3.4), 308–313. https://doi.org/10.2152/jmi.66.308

Cerebral gliomas: diffusional kurtosis imaging analysis of microstructural differences. Raab P, Hattingen E, Franz K, Zanella FE, Lanfermann H. Radiology. 2010 Mar; 254(3):876-81.

Gliomas: diffusion kurtosis MR imaging in grading. Van Cauter S, Veraart J, Sijbers J, Peeters RR, Himmelreich U, De Keyzer F, Van Gool SW, Van Calenbergh F, De Vleeschouwer S, Van Hecke W, Sunaert S. Radiology. 2012 May; 263(2):492-501.

Wu, E. X., & Cheung, M. M. (2010). MR diffusion kurtosis imaging for neural tissue characterization. NMR in biomedicine, 23(7), 836–848. https://doi.org/10.1002/nbm.1506

Jiang, Rifeng et al. “Diffusion kurtosis imaging can efficiently assess the glioma grade and cellular proliferation.” Oncotarget vol. 6,39 (2015): 42380-93. doi:10.18632/oncotarget.5675

Grading of astrocytomas. A simple and reproducible method. Daumas-Duport C, Scheithauer B, O'Fallon J, Kelly P. Cancer. 1988 Nov 15; 62(10):2152-65.

Larsen, Jennifer et al. “'Low grade glioma': an update for radiologists.” The British journal of radiology vol. 90,1070 (2017): 20160600. doi:10.1259/bjr.20160600

Momeni, Farideh et al. “Differentiating Between Low- and High-grade Glioma Tumors Measuring Apparent Diffusion Coefficient Values in Various Regions of the Brain.” Oman medical journal vol. 36,2 e251. 31 Mar. 2021, doi:10.5001/omj.2021.59

Seifi, S., Shafaie, S., & Ghadiri, S. (2011). Microvessel density in follicular cysts, keratocystic odontogenic tumours and ameloblastomas. Asian Pacific journal of cancer prevention : APJCP, 12(2), 351–356.

Rojiani, A. M., & Dorovini-Zis, K. (1996). Glomeruloid vascular structures in glioblastoma multiforme: an immunohistochemical and ultrastructural study. Journal of neurosurgery, 85(6), 1078–1084. https://doi.org/10.3171/jns.1996.85.6.1078

Hu, L S et al. “Correlations between perfusion MR imaging cerebral blood volume, microvessel quantification, and clinical outcome using stereotactic analysis in recurrent high-grade glioma.” AJNR. American journal of neuroradiology vol. 33,1 (2012): 69-76. doi:10.3174/ajnr.A2743

Grimm, Sean A, and Marc C Chamberlain. “Anaplastic astrocytoma.” CNS oncology vol. 5,3 (2016): 145-57. doi:10.2217/cns-2016-0002

Thomsen, H., Steffensen, E., & Larsson, E. M. (2012). Perfusion MRI (dynamic susceptibility contrast imaging) with different measurement approaches for the evaluation of blood flow and blood volume in human gliomas. Acta radiologica (Stockholm, Sweden : 1987), 53(1), 95–101. https://doi.org/10.1258/ar.2011.110242

Lee D. H. (1991). Mechanisms of contrast enhancement in magnetic resonance imaging. Canadian Association of Radiologists journal = Journal l'Association canadienne des radiologistes, 42(1), 6–12.

Chakhoyan, Ararat et al. “Validation of vessel size imaging (VSI) in high-grade human gliomas using magnetic resonance imaging, image-guided biopsies, and quantitative immunohistochemistry.” Scientific reports vol. 9,1 2846. 26 Feb. 2019, doi:10.1038/s41598-018-37564-w

Leu, K., Boxerman, J. L., Lai, A., Nghiemphu, P. L., Pope, W. B., Cloughesy, T. F., & Ellingson, B. M. (2016). Bidirectional Contrast agent leakage correction of dynamic susceptibility contrast (DSC)-MRI improves cerebral blood volume estimation and survival prediction in recurrent glioblastoma treated with bevacizumab. Journal of magnetic resonance imaging : JMRI, 44(5), 1229–1237. https://doi.org/10.1002/jmri.25227

Boxerman, J L et al. “The Role of preload and leakage correction in gadolinium-based cerebral blood volume estimation determined by comparison with MION as a criterion standard.” AJNR. American journal of neuroradiology vol. 33,6 (2012): 1081-7. doi:10.3174/ajnr.A2934

Law, Meng et al. “Comparison of cerebral blood volume and vascular permeability from dynamic susceptibility contrast-enhanced perfusion MR imaging with glioma grade.” AJNR. American journal of neuroradiology vol. 25,5 (2004): 746-55.

Huber, P. E., Hawighorst, H., Fuss, M., van Kaick, G., Wannenmacher, M. F., & Debus, J. (2001). Transient enlargement of contrast uptake on MRI after linear accelerator (linac) stereotactic radiosurgery for brain metastases. International journal of radiation oncology, biology, physics, 49(5), 1339–1349. https://doi.org/10.1016/s0360-3016(00)01511-x

Ma, Yiming et al. “How to differentiate pseudoprogression from true progression in cancer patients treated with immunotherapy.” American journal of cancer research vol. 9,8 1546-1553. 1 Aug. 2019

Nichols R. G. (1997). Drug proficiency test false positives: a lack of critical thought. Science & justice : journal of the Forensic Science Society, 37(3), 191–196. https://doi.org/10.1016/S1355-0306(97)72173-7

Melguizo-Gavilanes, Isaac et al. “Characterization of pseudoprogression in patients with glioblastoma: is histology the gold standard?.” Journal of neuro-oncology vol. 123,1 (2015): 141-50. doi:10.1007/s11060-015-1774-5

Thust, Stefanie C et al. “Pseudoprogression of brain tumors.” Journal of magnetic resonance imaging : JMRI, vol. 48,3 571–589. 7 May. 2018, doi:10.1002/jmri.26171

Young, Robert J et al. “MRI perfusion in determining pseudoprogression in patients with glioblastoma.” Clinical imaging vol. 37,1 (2013): 41-9. doi:10.1016/j.clinimag.2012.02.016

Spampinato, M V et al. “Correlation between cerebral blood volume measurements by perfusion-weighted magnetic resonance imaging and two-year progression-free survival in gliomas.” The neuroradiology journal vol. 26,4 (2013): 385-95. doi:10.1177/197140091302600404

Tsien, Christina et al. “Parametric response map as an imaging biomarker to distinguish progression from pseudoprogression in high-grade glioma.” Journal of clinical oncology : official journal of the American Society of Clinical Oncology vol. 28,13 (2010): 2293-9. doi:10.1200/JCO.2009.25.3971

Surapaneni, Krishna et al. “Early Cerebral Blood Volume Changes Predict Progression After Convection-Enhanced Delivery of Topotecan for Recurrent Malignant Glioma.” World neurosurgery vol. 84,1 (2015): 163-72. doi:10.1016/j.wneu.2015.03.008

Yoo, Roh-Eul, and Seung Hong Choi. “Recent Application of Advanced MR Imaging to Predict Pseudoprogression in High-grade Glioma Patients.” Magnetic resonance in medical sciences : MRMS : an official journal of Japan Society of Magnetic Resonance in Medicine vol. 15,2 (2016): 165-77. doi:10.2463/mrms.rev.2015-0053

Hakyemez, B., Erdogan, C., Ercan, I., Ergin, N., Uysal, S., & Atahan, S. (2005). High-grade and low-grade gliomas: differentiation by using perfusion MR imaging. Clinical radiology, 60(4), 493–502. https://doi.org/10.1016/j.crad.2004.09.009

Lee, J., Wang, N., Turk, S. et al. Discriminating pseudoprogression and true progression in diffuse infiltrating glioma using multi-parametric MRI data through deep learning. Sci Rep 10, 20331 (2020). https://doi.org/10.1038/s41598-020-77389-0

Zhou, Zhuxian, and Zheng-Rong Lu. “Gadolinium-based contrast agents for magnetic resonance cancer imaging.” Wiley interdisciplinary reviews. Nanomedicine and nanobiotechnology vol. 5,1 (2013): 1-18. doi:10.1002/wnan.1198

Jost, Gregor et al. “Penetration and distribution of gadolinium-based contrast agents into the cerebrospinal fluid in healthy rats: a potential pathway of entry into the brain tissue.” European radiology vol. 27,7 (2017): 2877-2885. doi:10.1007/s00330-016-4654-2

Cheng Q, Huang J, Liang J, Ma M, Ye K, Shi C, et al. The diagnostic performance of DCE-MRI in evaluating the pathological response to neoadjuvant chemotherapy in breast cancer: a meta-analysis. Front Oncol. (2020) 10:93. doi: 10.3389/fonc.2020.00093

Zach, Leor et al. “Delayed contrast extravasation MRI: a new paradigm in neuro-oncology.” Neuro-oncology vol. 17,3 (2015): 457-65. doi:10.1093/neuonc/nou230

Ritchie, David J et al. “Intraparenchymal extravasation of gadolinium mimicking an enhancing brain tumor.” The neuroradiology journal vol. 32,4 (2019): 273-276. doi:10.1177/1971400919853789

Liang J, Liu D, Gao P, Zhang D, Chen H, Shi C, et al. Diagnostic values of DCE-MRI and

a. DSC-MRI for differentiation between high-grade and low-grade gliomas: a comprehensive meta-analysis. Acad Radiol. (2018) 25:338–48. doi: 10.1016/j.acra.2017.10.001

Wake, Nicole et al. “Accuracy and precision of quantitative DCE-MRI parameters: How should one estimate contrast concentration?.” Magnetic resonance imaging vol. 52 (2018): 16-23. doi:10.1016/j.mri.2018.05.007

Duhamel, G., Schlaug, G., & Alsop, D. C. (2006). Measurement of arterial input functions for dynamic susceptibility contrast magnetic resonance imaging using echoplanar images: comparison of physical simulations with in vivo results. Magnetic resonance in medicine, 55(3), 514–523. https://doi.org/10.1002/mrm.20802

Gao P, Shi C, Zhao L, Zhou Q, Luo L. Differential diagnosis of prostate cancer and noncancerous tissue in the peripheral zone and central gland using the quantitative parameters of DCE-MRI: a meta-analysis. Medicine. (2016) 95:e5715. doi: 10.1097/MD.0000000000005715

Yankeelov, T. E., Luci, J. J., Lepage, M., Li, R., Debusk, L., Lin, P. C., Price, R. R., & Gore, J. C. (2005). Quantitative pharmacokinetic analysis of DCE-MRI data without an arterial input function: a reference region model. Magnetic resonance imaging, 23(4), 519–529. https://doi.org/10.1016/j.mri.2005.02.013

Zhang, Junfeng et al. “Clinical Applications of Contrast-Enhanced Perfusion MRI Techniques in Gliomas: Recent Advances and Current Challenges.” Contrast media & molecular imaging vol. 2017 7064120. 20 Mar. 2017, doi:10.1155/2017/7064120

Gordon, Yaron et al. “Dynamic contrast-enhanced magnetic resonance imaging: fundamentals and application to the evaluation of the peripheral perfusion.” Cardiovascular diagnosis and therapy vol. 4,2 (2014): 147-64. doi:10.3978/j.issn.2223-3652.2014.03.01

Shen, F. U., Lu, J., Chen, L., Wang, Z., & Chen, Y. (2016). Diagnostic value of dynamic contrast-enhanced magnetic resonance imaging in rectal cancer and its correlation with tumor differentiation. Molecular and clinical oncology, 4(4), 500–506. https://doi.org/10.3892/mco.2016.762

Krüger-Genge, Anne et al. “Vascular Endothelial Cell Biology: An Update.” International journal of molecular sciences vol. 20,18 4411. 7 Sep. 2019, doi:10.3390/ijms20184411

Aquino, Domenico et al. “MRI in Glioma Immunotherapy: Evidence, Pitfalls, and Perspectives.” Journal of immunology research vol. 2017 (2017): 5813951. doi:10.1155/2017/5813951

Verma, Nishant et al. “Differentiating tumor recurrence from treatment necrosis: a review of neuro-oncologic imaging strategies.” Neuro-oncology vol. 15,5 (2013): 515-34. doi:10.1093/neuonc/nos307

van Dijken, Bart R J et al. “Perfusion MRI in treatment evaluation of glioblastomas: Clinical relevance of current and future techniques.” Journal of magnetic resonance imaging : JMRI vol. 49,1 (2019): 11-22. doi:10.1002/jmri.26306

Kim, H. S., Goh, M. J., Kim, N., Choi, C. G., Kim, S. J., & Kim, J. H. (2014). Which combination of MR imaging modalities is best for predicting recurrent glioblastoma? Study of diagnostic accuracy and reproducibility. Radiology, 273(3), 831–843. https://doi.org/10.1148/radiol.14132868

Siemann, Dietmar W. “The unique characteristics of tumor vasculature and preclinical evidence for its selective disruption by Tumor-Vascular Disrupting Agents.” Cancer treatment reviews vol. 37,1 (2011): 63-74. doi:10.1016/j.ctrv.2010.05.001

Dewhirst, Mark W, and Timothy W Secomb. “Transport of drugs from blood vessels to tumour tissue.” Nature reviews. Cancer vol. 17,12 (2017): 738-750. doi:10.1038/nrc.2017.93

Mankoff, David A et al. “Blood flow-metabolism mismatch: good for the tumor, bad for the patient.” Clinical cancer research : an official journal of the American Association for Cancer Research vol. 15,17 (2009): 5294-6. doi:10.1158/1078-0432.CCR-09-1448

Jain, R., Ellika, S. K., Scarpace, L., Schultz, L. R., Rock, J. P., Gutierrez, J., Patel, S. C., Ewing, J., & Mikkelsen, T. (2008). Quantitative estimation of permeability surface-area product in astroglial brain tumors using perfusion CT and correlation with histopathologic grade. AJNR. American journal of neuroradiology, 29(4), 694–700. https://doi.org/10.3174/ajnr.A0899

Baron J. C. (2001). Perfusion thresholds in human cerebral ischemia: historical perspective and therapeutic implications. Cerebrovascular diseases (Basel, Switzerland), 11 Suppl 1, 2–8. https://doi.org/10.1159/000049119

Borogovac, Ajna, and Iris Asllani. “Arterial Spin Labeling (ASL) fMRI: advantages, theoretical constrains, and experimental challenges in neurosciences.” International journal of biomedical imaging vol. 2012 (2012): 818456. doi:10.1155/2012/818456

Ziyad, Safiyyah, and M Luisa Iruela-Arispe. “Molecular mechanisms of tumor angiogenesis.” Genes & cancer vol. 2,12 (2011): 1085-96. doi:10.1177/1947601911432334

Yao, V. J., Ozawa, M. G., Varner, A. S., Kasman, I. M., Chanthery, Y. H., Pasqualini, R., Arap, W., & McDonald, D. M. (2006). Antiangiogenic therapy decreases integrin expression in normalized tumor blood vessels. Cancer research, 66(5), 2639–2649. https://doi.org/10.1158/0008-5472.CAN-05-1824

Salehi, Arjang et al. “Response of the cerebral vasculature following traumatic brain injury.” Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism vol. 37,7 (2017): 2320-2339. doi:10.1177/0271678X17701460

Barker, Holly E et al. “The tumour microenvironment after radiotherapy: mechanisms of resistance and recurrence.” Nature reviews. Cancer vol. 15,7 (2015): 409-25. doi:10.1038/nrc3958

Rotchanapanya, Wannaphorn et al. “Clinical Outcomes Based on Measurable Residual Disease Status in Patients with Core-Binding Factor Acute Myeloid Leukemia: A Systematic Review and Meta-Analysis.” Journal of personalized medicine vol. 10,4 250. 26 Nov. 2020, doi:10.3390/jpm10040250

Beauchemin, C et al. “Relationship between progression-free survival and overall survival in chronic lymphocytic leukemia: a literature-based analysis.” Current oncology (Toronto, Ont.) vol. 22,3 (2015): e148-56. doi:10.3747/co.22.2119

Young, A., Poretti, A., Bosemani, T., Goel, R., & Huisman, T. (2017). Sensitivity of susceptibility-weighted imaging in detecting developmental venous anomalies and associated cavernomas and microhemorrhages in children. Neuroradiology, 59(8), 797–802. https://doi.org/10.1007/s00234-017-1867-2

Thomas, B., Somasundaram, S., Thamburaj, K., Kesavadas, C., Gupta, A. K., Bodhey, N. K., & Kapilamoorthy, T. R. (2008). Clinical applications of susceptibility weighted MR imaging of the brain - a pictorial review. Neuroradiology, 50(2), 105–116. https://doi.org/10.1007/s00234-007-0316-z

Löbel, Ulrike et al. “Three-dimensional susceptibility-weighted imaging and two-dimensional T2*-weighted gradient-echo imaging of intratumoral hemorrhages in pediatric diffuse intrinsic pontine glioma.” Neuroradiology vol. 52,12 (2010): 1167-77. doi:10.1007/s00234-010-0771-9

Stadnik, T W et al. “Diffusion-weighted MR imaging of intracerebral masses: comparison with conventional MR imaging and histologic findings.” AJNR. American journal of neuroradiology vol. 22,5 (2001): 969-76.

Sehgal, V., Delproposto, Z., Haddar, D., Haacke, E. M., Sloan, A. E., Zamorano, L. J., Barger, G., Hu, J., Xu, Y., Prabhakaran, K. P., Elangovan, I. R., Neelavalli, J., & Reichenbach, J. R. (2006). Susceptibility-weighted imaging to visualize blood products and improve tumor contrast in the study of brain masses. Journal of magnetic resonance imaging : JMRI, 24(1), 41–51. https://doi.org/10.1002/jmri.20598

Ozturk, K., & Nascene, D. (2021). Susceptibility-Weighted Imaging of the Pediatric Brain after Repeat Doses of Gadolinium-Based Contrast Agent. AJNR. American journal of neuroradiology, 42(6), 1136–1143. https://doi.org/10.3174/ajnr.A7143

Xia, X. B., & Tan, C. L. (2013). A quantitative study of magnetic susceptibility-weighted imaging of deep cerebral veins. Journal of neuroradiology = Journal de neuroradiologie, 40(5), 355–359. https://doi.org/10.1016/j.neurad.2013.03.005

Barnes, Samuel R S, and E Mark Haacke. “Susceptibility-weighted imaging: clinical angiographic applications.” Magnetic resonance imaging clinics of North America vol. 17,1 (2009): 47-61. doi:10.1016/j.mric.2008.12.002

Kim, Baek Gil et al. “Laminin-332-rich tumor microenvironment for tumor invasion in the interface zone of breast cancer.” The American journal of pathology vol. 178,1 (2011): 373-81. doi:10.1016/j.ajpath.2010.11.028

Martin TA, Ye L, Sanders AJ, et al. Cancer Invasion and Metastasis: Molecular and Cellular Perspective. In: Madame Curie Bioscience Database [Internet]. Austin (TX): Landes Bioscience; 2000-2013. Available from: https://www.ncbi.nlm.nih.gov/books/NBK164700/

Aydın, Ö., Büyükkaya, R., & Hakyemez, B. (2017). Contrast medium enhanced susceptibility imaging signal mechanism; should we use contrast medium?. Acta radiologica (Stockholm, Sweden : 1987), 58(1), 107–113. https://doi.org/10.1177/0284185116637246

Haacke, E. M., Mittal, S., Wu, Z., Neelavalli, J., & Cheng, Y. C. (2009). Susceptibility-weighted imaging: technical aspects and clinical applications, part 1. AJNR. American journal of neuroradiology, 30(1), 19–30. https://doi.org/10.3174/ajnr.A1400

Kong, LW., Chen, J., Zhao, H. et al. Intratumoral Susceptibility Signals Reflect Biomarker Status in Gliomas. Sci Rep 9, 17080 (2019). https://doi.org/10.1038/s41598-019-53629-w

McGahan, Ben G et al. “Assessment of vascularity in glioblastoma and its implications on patient outcomes.” Journal of neuro-oncology vol. 132,1 (2017): 35-44. doi:10.1007/s11060-016-2350-3

Saini, Jitender et al. “Comparative evaluation of cerebral gliomas using rCBV measurements during sequential acquisition of T1-perfusion and T2*-perfusion MRI.” PloS one vol. 14,4 e0215400. 24 Apr. 2019, doi:10.1371/journal.pone.0215400

Mohammed, Wasif et al. “Clinical applications of susceptibility-weighted imaging in detecting and grading intracranial gliomas: a review.” Cancer imaging : the official publication of the International Cancer Imaging Society vol. 13,2 186-95. 24 Apr. 2013, doi:10.1102/1470-7330.2013.0020

Eisele, P., Fischer, K., Szabo, K., Platten, M., & Gass, A. (2019). Characterization of Contrast-Enhancing and Non-contrast-enhancing Multiple Sclerosis Lesions Using Susceptibility-Weighted Imaging. Frontiers in neurology, 10, 1082. https://doi.org/10.3389/fneur.2019.01082

Published

06-10-2022

How to Cite

Nguyen, P., & Cain, J. (2022). A New Frontier in Fighting Brain Cancer: Cutting Edge Magnetic Resonance Imaging Techniques. Journal of Student Research, 10(4). https://doi.org/10.47611/jsrhs.v10i4.1952

Issue

Section

HS Review Articles