Mechanisms of Covid-induced Heart failure
DOI:
https://doi.org/10.47611/jsrhs.v10i3.1951Keywords:
Heart Failure, Ischemia, Thrombosis, Myocarditis, Inflammatory Mediator, Left Ventricular Dysfunction, Renal Impairment, Septic Shock, Volume Overload, RAAS (Renin-Angiotensin-Aldosterone system), Sympathetic Activation, Stress Cardiomyopathy, ARDS (Acute Respiratory Disorder), Pulmonary Hypertension, Right Heart FailureAbstract
Sars-Cov-2 binds to ACE-2 receptor, resulting in excess amount of ACE-1 dependent angiotensin production. Sars-Cov-2 has four stages of symptoms, 80% if symptomatic patients have been shown to only suffer a “mild” disease course, meanwhile 20% endure stage 3, which is characterized by conditions such as ARDS, shock, and multiorgan failure. The binding of Covid to ACE receptors promotes the conversion of angiotensin 1 to angiotensin 2, constricting blood vessels, leading to thrombosis, lack of oxygen, and Ischemia. In Cardiac injury, the Covid receptor becomes represented in the heart, inducing in a pro-inflammatory increase, high cytokine concentrations, myocyte cardiac apoptosis, cardiac arrythmia, cardiac fibrotic tissue, myocarditis, and Heart failure. Cytokine storms associated with production of S1P, TNF activation of MMPs prompts myocardial depression, dilation of LV, and Heart failure. Covid-induced Sepsis corresponds with dysregulated host immune responses, increased pro-inflammatory mediators, fluid leakage, increase in cGMP, LV dysfunction, and arrythmia. Blood clots in the capillaries surrounding the kidneys generate renal impairment. Progression of renal impairment generates a state of systemic inflammation. Increased sodium content in the body results in elevated plasma blood and uncontrolled hypervolemia. Emotional and physical stresses during Sars-Cov-2 induce blood gas changes, angiotensin converting enzyme imbalance, and immune/inflammatory factors. Overactivation of the SNS induces Takotsubo syndrome. In ARDS, fluid leak in the membrane gas exchange region of the lung results in vascular remodeling. Inducing further vascular remodeling as part of the body’s response to hypoxia. The constant vascular remodeling triggers RHF.
Downloads
References or Bibliography
Colantuoni, A., Martini, R., Caprari, P., Ballestri, M., Capecchi, P. L., Gnasso, A., . . . Caimi, G. (2020). COVID-19 Sepsis and Microcirculation Dysfunction. Frontiers in Physiology, 11. doi:10.3389/fphys.2020.00747
Clinic, C. (n.d.). Heart Failure: Types, Symptoms, Causes & Treatments. Retrieved June 3, 2021, from https://my.clevelandclinic.org/health/diseases/17069-heart-failure-understanding-heart-failure#management-and-treatment
L. (n.d.). The Pericardium. Retrieved from https://www.liverpool.ac.uk/~trh/local_html/heartdisease/pericardium.htm
M. (n.d.). Chambers and valves of the heart. Retrieved July 24, 2021, from https://www.mayoclinic.org/chambers-and-valves-of-the-heart/img-20007497
Ayres, J.S. A metabolic handbook for the COVID-19 pandemic. Nat Metab 2, 572–585 (2020). https://doi.org/10.1038/s42255-020-0237-2
Lupi, L., Adamo, M., Inciardi, R. M., & Metra, M. (2020). ACE2 down-regulation may contribute to the increased thrombotic risk in COVID-19. European Heart Journal, 41(33), 3200-3200. doi:10.1093/eurheartj/ehaa583
Clinic, C. (n.d.). Deep Vein Thrombosis (DVT); Symptoms, Causes, Treatment & Prevention. Retrieved June 3, 2021, from https://my.clevelandclinic.org/health/diseases/16911-deep-vein-thrombosis-dvt
Rodriguez, B., Trayanova, N., & Noble, D. (2006). Modeling Cardiac Ischemia. Annals of the New York Academy of Sciences, 1080(1), 395-414. doi:10.1196/annals.1380.029
Blaisdell FW, Steele M, Allen RE. Management of acute lower extremity arterial ischemia due to embolism and thrombosis. Surgery. 1978 Dec;84(6):822-34. PMID: 715701.
Vitiello, A., & Ferrara, F. (2020). Pharmacological agents to therapeutic treatment of cardiac injury caused by Covid-19. Life Sciences, 262, 118510. doi:10.1016/j.lfs.2020.118510
Fara, A., Mitrev, Z., Rosalia, R. A., & Assas, B. M. (2020). Cytokine storm and COVID-19: A chronicle of pro-inflammatory cytokines. Open Biology, 10(9), 200160. doi:10.1098/rsob.200160
Al, A. N. (2020). Cardiac and arrhythmic complications in Covid-19 patients. Authorea. doi:10.22541/au.158594433.36475644
Matsumori, A. (2000). Cytokines and Heart Failure: Pathophysiological Roles and Therapeutic Implications. Heart Failure, 35-45. doi:10.1007/978-4-431-68331-5_3
Meacci, E., Garcia-Gil, M., & Pierucci, F. (2020). SARS-CoV-2 Infection: A Role for S1P/S1P Receptor Signaling in the Nervous System? International Journal of Molecular Sciences, 21(18), 6773. doi:10.3390/ijms21186773
Mann, D. L. (2001). The Role of Inflammatory Mediators in the Failing Heart. Developments in Cardiovascular Medicine The Role of Inflammatory Mediators in the Failing Heart, 1-1. doi:10.1007/978-1-4615-1449-7_1
Guo BB, Bellingham SA, Hill AF. The neutral sphingomyelinase pathway regulates packaging of the prion protein into exosomes. J Biol Chem. 2015 Feb 6;290(6):3455-67. doi: 10.1074/jbc.M114.605253. Epub 2014 Dec 10. PMID: 25505180; PMCID: PMC4319014.
Alliance, S. (2020, March 26). The Connection Between COVID-19, Sepsis, and Sepsis Survivors. Retrieved June 3, 2021, from https://www.sepsis.org/news/the-connection-between-covid-19-sepsis-and-sepsis-survivors/
Shappell, C. N., Klompas, M., & Rhee, C. (2020). Does Severe Acute Respiratory Syndrome Coronavirus 2 Cause Sepsis?. Critical care medicine, 48(12), 1707–1709. https://doi.org/10.1097/CCM.0000000000004601
Angus, D. C., & Poll, T. V. (2013). Severe Sepsis and Septic Shock. The New England Journal of Medicine. doi:10.1056/NEJMra1208623
NHS. "Septic Shock Symptoms and Treatment." Illnesses & Conditions | NHS Inform. February 10, 2020. Accessed June 03, 2021. https://www.nhsinform.scot/illnesses-and-conditions/blood-and-lymph/septic-shock.
Huang, S.J., Nalos, M. & McLean, A.S. Is early ventricular dysfunction or dilatation associated with lower mortality rate in adult severe sepsis and septic shock? A meta-analysis. Crit Care 17, R96 (2013). https://doi.org/10.1186/cc12741
Gamcrlidze MM, Intskirveli NA, Vardosanidze KD, et al. Vasoplegia in septic shock (review). Georgian Medical News. 2015 Feb(239):56-62.
Sharawy, Nivin. "Vasoplegia in Septic Shock: Do We Really Fight the Right Enemy?" ScienceDirect, February 2014. Accessed June 3, 2021. doi:10.1016/j.jcrc.2013.08.021.
Stasch, J. P., Pacher, P., & Evgenov, O. V. (2011). Soluble guanylate cyclase as an emerging therapeutic target in cardiopulmonary disease. Circulation, 123(20), 2263–2273. https://doi.org/10.1161/CIRCULATIONAHA.110.981738
1. Burgdorff A-M, Bucher M, Schumann J. Vasoplegia in patients with sepsis and septic shock: pathways and mechanisms. Journal of International Medical Research. April 2018:1303-1310. doi:10.1177/0300060517743836
Sperati, C. J. (n.d.). Coronavirus: Kidney Damage Caused by COVID-19. Retrieved June 3, 2021, from https://www.hopkinsmedicine.org/health/conditions-and-diseases/coronavirus/coronavirus-kidney-damage-caused-by-covid19#:~:text=COVID-19 causes blood clots,kidney and impair its function
Ebah, L. M., Wiig, H., Dawidowska, I., Otoole, C., Summers, A., Nikam, M., . . . Mitra, S. (2013). Subcutaneous interstitial pressure and volume characteristics in renal impairment associated with edema. Kidney International, 84(5), 980-988. doi:10.1038/ki.2013.208
Nisbeth U, Hällgren R, Eriksson O, Danielson BG. Endotoxemia in chronic renal failure. Nephron. 1987;45(2):93-7. doi: 10.1159/000184086. PMID: 3550501.
F. (n.d.). Hypervolemia and Signs of Fluid Overload. Retrieved June 3, 2021, from https://www.freseniuskidneycare.com/thrive-central/hypervolemia
Hassan, M. O., Duarte, R., Dix-Peek, T., Vachiat, A., Naidoo, S., Dickens, C., . . . Naicker, S. (2016). Correlation between volume overload, chronic inflammation, and left ventricular dysfunction in chronic kidney disease patients. Clinical Nephrology, 86(S1), 131-135. doi:10.5414/cnp86s127
Sperati, C. (n.d.). Coronavirus: Kidney Damage Caused by COVID-19. Retrieved June 3, 2021, from https://www.hopkinsmedicine.org/health/conditions-and-diseases/coronavirus/coronavirus-kidney-damage-caused-by-covid19
Porzionato, A., Emmi, A., Barbon, S., Boscolo‐Berto, R., Stecco, C., Stocco, E., . . . Caro, R. D. (2020). Sympathetic activation: A potential link between comorbidities and COVID‐19. The FEBS Journal, 287(17), 3681-3688. doi:10.1111/febs.15481
Sverrisdóttir, Y. B., Schultz, T., Omerovic, E., & Elam, M. (2012). Sympathetic nerve activity in stress-induced cardiomyopathy. Clinical autonomic research : official journal of the Clinical Autonomic Research Society, 22(6), 259–264. https://doi.org/10.1007/s10286-012-0162-x
Wittstein, I. S. (2016). The Sympathetic Nervous System in the Pathogenesis of Takotsubo Syndrome. ResearchGate. http://dx.doi.org/10.1016/j.hfc.2016.06.012
Batah, S. S., & Fabro, A. T. (2021). Pulmonary pathology of ARDS in COVID-19: A pathological review for clinicians. Respiratory Medicine, 176, 106239. doi:10.1016/j.rmed.2020.106239
C. (2019, December 03). Pulmonary Hypertension. Retrieved June 3, 2021, from https://www.cdc.gov/heartdisease/pulmonary_hypertension.htm
Pak, O., Aldashev, A., Welsh, D., & Peacock, A. (2007). The effects of hypoxia on the cells of the pulmonary vasculature. European Respiratory Journal, 30(2), 364-372. doi:10.1183/09031936.00128706
Bogaard, H., Abe, K., Noordegraaf, A., & Voelkel, N. (2009). The Right Ventricle Under Pressure: Cellular and Molecular Mechanisms of Right-Heart Failure in Pulmonary Hypertension. ScienceDirect. doi:https://doi.org/10.1378/chest.08-0492
Guarracino F, Cariello C, Danella A, Doroni L, Lapolla F, Vullo C, Pasquini C, Stefani M. Right ventricular failure: physiology and assessment. Minerva Anestesiol. 2005 Jun;71(6):307-12. PMID: 15886593.
Published
How to Cite
Issue
Section
Copyright (c) 2021 Frank Bunks; Roel Mercado
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Copyright holder(s) granted JSR a perpetual, non-exclusive license to distriute & display this article.