A Hard Day’s Night: Optimizing Productivity of Arabidopsis thaliana in Hydroponic Systems
DOI:
https://doi.org/10.47611/jsrhs.v10i4.1950Keywords:
Hydroponics, Optimization, Circadian mechanisms, ArabidopsisAbstract
The purpose of this study was to explore effects of the exogenous application of supplemental nutrients when differentiating both light and dark cycle requirements set by the plant’s circadian mechanisms. Arabidopsis thaliana, a model organism for plant research, was grown hydroponically under standard environmental conditions. It was found that adding additional carbohydrates solely during the plant’s light cycle displayed a 255% increase in root:shoot ratio compared to the 24h application of equivalent nutrients, suggesting this approach of differentiating nutrient and carbohydrate requirements has promising results for plant growth and productivity.
Downloads
References or Bibliography
Graf, A., & Smith, A. M. (2011). Starch and the clock: The dark side of plant productivity. Trends in Plant Science, 16(3), 169-175. https://doi.org/10.1016/j.tplants.2010.12.003
Scialdone, A., & Howard, M. (2015). How plants manage food reserves at night: Quantitative models and open questions. Frontiers in Plant Science, 6. https://doi.org/10.3389/fpls.2015.00204
Wiese, A., Christ, M. M., Virnich, O., Schurr, U., & Walter, A. (2007). Spatio-temporal leaf growth patterns of Arabidopsis thaliana and evidence for sugar control of the diel leaf growth cycle. New Phytologist, 174(4), 752-761. https://doi.org/10.1111/j.1469-8137.2007.02053.x
Zeeman, S. C., & Rees, T. A. (1999). Changes in carbohydrate metabolism and assimilate export in starch‐excess mutants of Arabidopsis. Plant, Cell & Environment, 22(11), 1445-1453. https://doi.org/10.1046/j.1365-3040.1999.00503.x
Graf, A., Schlereth, A., Stitt, M., & Smith, A. M. (2010). Circadian control of carbohydrate availability for growth in Arabidopsis plants at night. Proceedings of the National Academy of Sciences, 107(20), 9458-9463. https://doi.org/10.1073/pnas.0914299107
Smith, A. M., & Stitt, M. (2007). Coordination of carbon supply and plant growth. Plant, Cell & Environment, 30(9), 1126-1149. https://doi.org/10.1111/j.1365-3040.2007.01708.x
Harmer, S. L. (2009). The Circadian System in Higher Plants. Annual Review of Plant Biology, 60(1), 357-377. https://doi.org/10.1146/annurev.arplant.043008.092054
Lu, Y., Gehan, J. P., & Sharkey, T. D. (2005). Daylength and Circadian Effects on Starch Degradation and Maltose Metabolism. Plant Physiology, 138(4), 2280-2291. https://doi.org/10.1104/pp.105.061903
Dodd, A. N., Salathia, N., Hall, A., Kévei, E., Tóth, R., NagyHibberd, F., Hibberd, J. M., Millar, A. J., & Webb, A. A. R. (2005). Plant Circadian Clocks Increase Photosynthesis, Growth, Survival, and Competitive Advantage. Science, 309(5734), 630-633. https://doi.org/10.1126/science.1115581
Kulcheski, F. R., Côrrea, R., Gomes, I. A., de Lima, J. C., & Margis, R. (2015). NPK macronutrients and microRNA homeostasis. Frontiers in Plant Science, 6. https://doi.org/10.3389/fpls.2015.00451
Mengel, K., Kirkby, E. A., Kosegarten, H., & Appel, T. (2001). Principles of Plant Nutrition (5th ed.). Kluwer.
Arnon, D. I., & Stout, P. R. (1939). Molybdenum as an essential element for higher plants. Plant Physiology, 14(3), 599-602. https://doi.org/10.1104/pp.14.3.599
White, P. J., & Brown, P. H. (2010). Plant nutrition for sustainable development and global health. Annals of Botany, 105(7), 1073-1080. https://doi.org/10.1093/aob/mcq085
Frink, C. R., Waggoner, P. E., & Ausubel, J. H. (1999). Nitrogen fertilizer: Retrospect and prospect. Proceedings of the National Academy of Sciences, 96(4), 1175-1180. https://doi.org/10.1073/pnas.96.4.1175
Fischer, J. J., Beatty, P. H., Good, A. G., & Muench, D. G. (2013). Manipulation of microRNA expression to improve nitrogen use efficiency. Plant Science, 210, 70-81. https://doi.org/10.1016/j.plantsci.2013.05.009
Good, A. G., Shrawat, A. K., & Muench, D. G. (2004). Can less yield more? Is reducing nutrient input into the environment compatible with maintaining crop production? Trends in Plant Science, 9(12), 597-605. https://doi.org/10.1016/j.tplants.2004.10.008
Usherwood, N. R., & Segars, W. I. (2001). Nitrogen Interactions with Phosphorus and Potassium for Optimum Crop Yield, Nitrogen Use Effectiveness, and Environmental Stewardship. The Scientific World Journal, 1, 57-60. https://doi.org/10.1100/tsw.2001.97
Tocquin, P., Corbesier, L., Havelange, A., Pieltain, A., Kurtem, E., Bernier, G., & Périlleux, C. (2003). A novel high efficiency, low maintenance, hydroponic system for synchronous growth and flowering of Arabidopsis thaliana. BMC Plant Biology, 3(2). https://doi.org/10.1186/1471-2229-3-2
Conn, S. J., Hocking, B., Dayod, M., Xu, B., Athman, A., Henderson, S., Aukett, L., Conn, V., Shearer, M. K., Fuentes, S., Tyerman, S. D., & Gilliham, M. (2013). Protocol: optimising hydroponic growth systems for nutritional and physiological analysis of Arabidopsis thaliana and other plants. Plant Methods, 9(4). https://doi.org/10.1186/1746-4811-9-4
van Delden, S. H., Nazarideljou, M. J., & Marcelis, L. F. M. (2020). Nutrient solutions for Arabidopsis thaliana: A study on nutrient solution composition in hydroponics systems. Plant Methods, 16(1). https://doi.org/10.1186/s13007-020-00606-4
Hoagland, D. R., & Arnon, D. I. (1950). The water-culture method for growing plants without soil. California Agricultural Experiment Station.
Murashige, T., & Skoog, F. (1962). A Revised Medium for Rapid Growth and Bio Assays with Tobacco Tissue Cultures. Physiologia Plantarum, 15(3), 473-497. https://doi.org/10.1111/j.1399-3054.1962.tb08052.x
Koornneef, M., & Meinke, D. (2010). The development of Arabidopsis as a model plant. The Plant Journal, 61(6), 909-921. https://doi.org/10.1111/j.1365-313X.2009.04086.x
Fink, G. R. (1998). Anatomy of a revolution. Genetics, 149(2), 473-477. https://www.genetics.org/content/genetics/149/2/473.full.pdf
Domingues, D. S., Takahashi, H. W., Camara, C. A.P., & Nixdorf, S. L. (2012). Automated system developed to control pH and concentration of nutrient solution evaluated in hydroponic lettuce production. Computers and Electronics in Agriculture, 84, 53-61. https://doi.org/10.1016/j.compag.2012.02.006
Khan, S., Rowe, S. C., & Harmon, F. G. (2010). Coordination of the maize transcriptome by a conserved circadian clock. BMC Plant Biology, 10(1), 126. https://doi.org/10.1186/1471-2229-10-126
Chatterton, N. J., & Silvius, J. E. (1979). Photosynthate Partitioning into Starch in Soybean Leaves. Plant Physiology, 64(5), 749-753. https://doi.org/10.1104/pp.64.5.749
Jones, A. M., Chory, J., Dangl, J. L., Estelle, M., Jacobsen, S. E., Meyerowitz, E. M., Nordborg, M., & Weigel, D. (2008). The Impact of Arabidopsis on Human Health: Diversifying Our Portfolio. Cell, 133(6), 939-943. https://doi.org/10.1016/j.cell.2008.05.040
Lee, S., & Lee, J. (2015). Beneficial bacteria and fungi in hydroponic systems: Types and characteristics of hydroponic food production methods. Scientia Horticulturae, 195, 206-215. https://doi.org/10.1016/j.scienta.2015.09.011
Food and Agriculture Organization of the United Nations, World Food Programme, & International Food Policy Research Institute. (2019, April). Global Report on Food Crises 2019. Food Security Information Network. https://www.fsinplatform.org/sites/default/files/resources/files/GRFC_2019-Full_Report.pdf
Agriculture and Agri-Food Canada. (2019, January). Statistical Overview of the Canadian Greenhouse Vegetable Industry. https://www.agr.gc.ca/resources/prod/doc/pdf/st_ovrv_greenhouse_legumes_de_serre_2017-eng.pdf
Arteca, R. N., & Arteca, J. M. (2000). A novel method for growing Arabidopsis thaliana plants hydroponically. Physiologia Plantarum, 108(2), 188-193. https://doi.org/10.1034/j.1399-3054.2000.108002188.x
Gibeaut, D. M., Hulett, J., Cramer, G. R., & Seemann, J. R. (1997). Maximal Biomass of Arabidopsis thaliana Using a Simple, Low-Maintenance Hydroponic Method and Favorable Environmental Conditions. Plant Physiology, 115(2), 317-319. https://doi.org/10.1104/pp.115.2.317
Cho, L.-H., Pasriga, R., Yoon, J., Jeon, J.-S., & An, G. (2018). Roles of Sugars in Controlling Flowering Time. Journal of Plant Biology, 61(3), 121-130. https://doi.org/10.1007/s12374-018-0081-z
Sheen, J. (2014). Master regulators in plant glucose signaling networks. Journal of Plant Biology, 57(2), 67-79. https://doi.org/10.1007/s12374-014-0902-7
Zhou, L., Jang, J.-C., Jones, T. L., & Sheen, J. (1998). Glucose and ethylene signal transduction crosstalk revealed by an Arabidopsis glucose-insensitive mutant. Proceedings of the National Academy of Sciences, 95(17), 10294-10299. https://doi.org/10.1073/pnas.95.17.10294
United Nations Department of Economic and Social Affairs. (2019). World Population Prospects 2019: Highlights. https://population.un.org/wpp/Publications/Files/WPP2019_Highlights.pdf
UNESCO. (2020). UN World Water Development Report 2020: Water and Climate Change. https://unesdoc.unesco.org/ark:/48223/pf0000372985/PDF/372985eng.pdf.multi
Boyes, D. C., Zayed, A. M., Ascenzi, R., McCaskill, A. J., Hoffman, N. E., Davis, K. R., & Görlach, J. (2001). Growth Stage–Based Phenotypic Analysis of Arabidopsis. The Plant Cell, 13(7), 1499-1510. https://doi.org/10.1105/TPC.010011
Published
How to Cite
Issue
Section
Copyright (c) 2021 Alexandria Northey; Shelagh Straughan
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Copyright holder(s) granted JSR a perpetual, non-exclusive license to distriute & display this article.