Exploring the Effects of Varying Retinol Vitamin A Concentrations on Tissue Regeneration in the Species Asterina coronata

Authors

  • Yitian Xu Cherry Hill High School East
  • Brian Vernachio Mentor, Cherry Hill High School East

DOI:

https://doi.org/10.47611/jsrhs.v10i3.1801

Keywords:

Tissue Regeneration, Vitamin A, Asterina coronata, Varying Concentrations

Abstract

The following study will look at the relationship between tissue and regeneration rate in the sea star species Asterina and retinol vitamin A. The overall purpose of the study is to evaluate whether concentrations of retinol vitamin A will produce a positive, negative, or null effect on the tissue regeneration in Asterina coronata. After amputation of the ray, 48 sea stars were subjected to four different retinol vitamin A concentration levels for sixteen hours and observed over a thirty-to-forty-day time period. The results show that the second highest concentration group produced the most consistent and noticeable growth. Moreover, the highest concentration group showed the second highest rate compared with the lowest concentration group and the control. Through these results, it can be concluded that retinol vitamin A does support tissue regeneration in Asterina coronata to a limit before it begins a negative feedback. The findings in this study add to an understanding of the mechanisms behind cell differentiation and whether stem cells involving tissue regeneration can be activated with the treatment of vitamin A. Hopefully the connections made in this paper can impact current research on human stem cell therapy itself, and the topic of whether sea stars can be made into viable stem cell therapy models.

Downloads

Download data is not yet available.

References or Bibliography

Niazi, I. A. & Saxena, S. (1978). Abnormal hindlimb regeneration in tadpoles of the toad, Bufoandersonii exposed to excess vitamin A. Folia Biol. (Krakow) 26, 3-8.

Okada, T. S. (1996). A brief history of regeneration research—For admiring Professor Niazi’s discovery of the effect of vitamin A on regeneration. Journal of biosciences, 21(3), 261-271. https://doi.org/10.1007/BF02703088

Damodaran, S., Parkin, K. L., & Fennema, O. R. (Eds.). (2007). Fennema's food chemistry. CRC press. https://doi.org/10.1201/9781315372914

Sommer, A., & Vyas, K. S. (2012). A global clinical view on vitamin A and carotenoids. The American journal of clinical nutrition, 96(5), 1204S-1206S. 10.3945/ajcn.112.034868

Green, A. S., & Fascetti, A. J. (2016). Meeting the vitamin A requirement: the efficacy and importance of β-carotene in animal species. The Scientific World Journal, 2016. 10.1155/2016/7393620

National Institute of Health. Regeneration. (n.d.). Retrieved April 15, 2021, from https://www.nigms.nih.gov/education/factsheets/Pages/regeneration.aspx.

Carnevali, M. C. (2006). Regeneration in Echinoderms: repair, regrowth, cloning. Invertebrate Survival Journal, 3(1), 64-76.

Starfish. (2008, April 2). New World Encyclopedia. Retrieved April 15, 2021 from https://www.newworldencyclopedia.org/p/index.php?title=Starfish%20&oldid=683395.

Vickery, M. C., Vickery, M. S., McClintock, J. B., & Amsler, C. D. (2001). Utilization of a novel deuterostome model for the study of regeneration genetics: molecular cloning of genes that are differentially expressed during early stages of larval sea star regeneration. Gene, 262(1-2), 73-80. 10.1016/s0378-1119(00)00554-0

Cecil, M. L., & Tassava, R. A. (1986). Vitamin A enhances forelimb regeneration in juvenile leopard frogs Rana pipiens. Journal of Experimental Zoology, 237(1), 57-61. 10.1002/jez.1402370109

Niazi, I. A., & Alam, S. (1984). Regeneration of whole limbs from shank stumps in toad tadpoles treated with vitamin A. Wilhelm Roux's archives of developmental biology, 193(2), 111-116. 10.1007/BF00848639

Shekhawat, D. S., Jangir, O. P., Prakash, A., & Pawan, S. (2001). Lens regeneration in mice under the influence of vitamin A. Journal of biosciences, 26(5), 571-576. 10.1007/BF02704755

Alibardi, L. (2020). Vitamin A administration in lizards during tail regeneration determines epithelial mucogenesis and delays muscle and cartilage differentiation. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution, 334(1), 59-71. 10.1002/jez.b.22911

Zinder, R., Cooley, R., Vlad, L. G., & Molnar, J. A. (2019). Vitamin A and wound healing. Nutrition in Clinical Practice, 34(6), 839-849. 10.1002/ncp.10420

Maden, M. (2020). RA Signaling in Limb Development and Regeneration in Different Species. The Biochemistry of Retinoid Signaling III, 87-117. 10.1007/978-3-030-42282-0_4

Maden, M. (1983). The effect of vitamin A on the regenerating axolotl limb. Development, 77(1), 273-295. https://doi.org/10.1242/dev.77.1.273

Tafti, M., & Ghyselinck, N. B. (2007). Functional implication of the vitamin A signaling pathway in the brain. Archives of neurology, 64(12), 1706-1711. 10.1001/archneur.64.12.1706.

McKenna, N. J. (2012). EMBO Retinoids 2011: Mechanisms, biology and pathology of signaling by retinoic acid and retinoic acid receptors. Nuclear receptor signaling, 10(1), nrs-10003. 10.1621/nrs.10003

Al Tanoury, Z., Piskunov, A., & Rochette-Egly, C. (2013). Vitamin A and retinoid signaling: genomic and nongenomic effects: thematic review series: fat-soluble vitamins: vitamin A. Journal of lipid research, 54(7), 1761-1775. 10.1194/jlr.R030833

Honeycutt, N. R., & Pomory, C. M. (2019). Effects of salinity and feeding on arm regeneration in the starfish Luidia clathrata (Say, 1825)(Echinodermata: Asteroidea). Marine and Freshwater Behaviour and Physiology, 52(1), 37-51. https://doi.org/10.1080/10236244.2019.1629296

Scadding, S. R., & Maden, M. (1986). Comparison of the effects of vitamin A on limb development and regeneration in Xenopus laevis tadpoles. Development, 91(1), 35-53. https://doi.org/10.1242/dev.91.1.35

Knight, K. L. (2010). Study/experimental/research design: much more than statistics. Journal of athletic training, 45(1), 98-100. 10.4085/1062-6050-45.1.98

Adams, N. L., Heyland, A., Rice, L. L., & Foltz, K. R. (2019). Procuring animals and culturing of eggs and embryos. Methods in cell biology, 150, 3-46. 10.1016/bs.mcb.2018.11.006

National Center for Biotechnology Information (2021). PubChem Compound Summary for CID 445354, Retinol. Retrieved April 20, 2021 from https://pubchem.ncbi.nlm.nih.gov/compound/Retinol.

Caprette DR. Working with stock solutions (2012). Retrieved April 20, 2021 from https://www.ruf.rice.edu/~bioslabs/methods/solutions/stocks.htm.

M Amann, P., B Eichmuller, S., Schmidt, J., & V Bazhin, A. (2011). Regulation of gene expression by retinoids. Current medicinal chemistry, 18(9), 1405-1412. 10.2174/092986711795029618

Pendaries, V., Verrecchia, F., Michel, S., & Mauviel, A. (2003). Retinoic acid receptors interfere with the TGF-β/Smad signaling pathway in a ligand-specific manner. Oncogene, 22(50), 8212-8220. 10.1038/sj.onc.1206913

Published

03-11-2023

How to Cite

Xu, Y., & Vernachio, B. (2023). Exploring the Effects of Varying Retinol Vitamin A Concentrations on Tissue Regeneration in the Species Asterina coronata. Journal of Student Research, 10(3). https://doi.org/10.47611/jsrhs.v10i3.1801

Issue

Section

AP Capstone™ Research