Reasoning through the Gut: The Microbiota-Gut-Brain Axis and its Role in the Pathogenesis of Autism Spectrum Disorder
DOI:
https://doi.org/10.47611/jsrhs.v10i2.1771Keywords:
‘gut-brain axis’, ‘gut-brain communication’, ‘microbiota and mental health’, ‘microbiota and autism’, ‘gut microbiota and ASD’Abstract
The age-old phrase ‘gut feeling’ is increasingly finding a scientific basis. The human gut houses a massive colony of microorganisms that not only maintain intestinal function, but also have far-reaching connections to the brain through a complicated ‘microbiota-gut-brain’ (MGB) axis. This axis has now been established to have implications in the management of various neuro-psychological conditions including Autism spectrum disorder (ASD), a condition that affects the way people communicate, behave and interact with others. Once considered a rare disorder, it is now estimated to have a prevalence of about 1 in 54 children in the United States. It is unfortunate that the existing cognitive-behavioral therapy protocols for ASD are prolonged and expensive, and that there is no currently approved medication for the core symptoms of the disorder. Scientists are now exploring the MGB axis for establishing possible therapeutic targets to alleviate the symptoms of ASD. This review attempts to highlight how the MGB axis works, and to capture the essence of the mechanisms that implicate the MGB axis in the pathogenesis of ASD. Further research in this direction may convincingly establish the role of novel treatment options for ASD ranging from probiotics and dietary modifications to newer modalities like fecal transplants, vagal nerve stimulation and gene therapy. Microbes, and not just behavioral intervention therapy, may hold the key to treating ASD.
Downloads
References or Bibliography
Amaral, D. G., Schumann, C. M., & Nordahl, C. W. (2008). Neuroanatomy of autism. Trends in neurosciences, 31(3), 137-145. https://doi.org/10.1016/j.tins.2007.12.005
American Psychiatric Association, What Is Autism Spectrum Disorder? Accessed May 30, 2021 https://www.psychiatry.org/patients-families/autism/what-is-autism-spectrum-disorder
Andersson, M., Tangen, Ä., Farde, L., Bölte, S., Halldin, C., Borg, J., & Lundberg, J. (2020). Serotonin transporter availability in adults with autism—a positron emission tomography study. Molecular Psychiatry, 1-12. https://doi.org/10.1038/s41380-020-00868-3
Benger, M., Kinali, M., & Mazarakis, N. D. (2018). Autism spectrum disorder: prospects for treatment using gene therapy. Molecular autism, 9(1), 1-10. https://doi.org/10.1186/s13229-018-0222-8
Bonaz, B., Bazin, T., & Pellissier, S. (2018). The vagus nerve at the interface of the microbiota-Gut-Brain Axis. Front. Neurosci. Frontiers Media SA. https://doi.org/10.3389/fnins.2018.00049
Crumeyrolle-Arias, M., Jaglin, M., Bruneau, A., Vancassel, S., Cardona, A., Daugé, V., ... & Rabot, S. (2014). Absence of the gut microbiota enhances anxiety-like behavior and neuroendocrine response to acute stress in rats. Psychoneuroendocrinology, 42, 207-217. https://doi.org/10.1016/j.psyneuen.2014.01.014
Cryan, J. F., & Leonard, B. E. (2000). 5‐HT1A and beyond: the role of serotonin and its receptors in depression and the antidepressant response. Human Psychopharmacology: Clinical and Experimental, 15(2), 113-135. https://doi.org/10.1002/(SICI)1099-1077(200003)15:2<113::AID-HUP150>3.0.CO;2-W
Edwards, L. L., Quigley, E. M. M., Hofman, R., & Pfeiffer, R. F. (1993). Gastrointestinal symptoms in Parkinson disease: 18‐month follow‐up study. Movement disorders: official journal of the Movement Disorder Society, 8(1), 83-86. https://doi.org/10.1002/mds.870080115
Engineer, C. T., Hays, S. A., & Kilgard, M. P. (2017). Vagus nerve stimulation as a potential adjuvant to behavioral therapy for autism and other neurodevelopmental disorders. Journal of neurodevelopmental disorders, 9(1), 1-8. https://doi.org/10.1186/s11689-017-9203-z
Foley, K. A., MacFabe, D. F., Vaz, A., Ossenkopp, K. P., & Kavaliers, M. (2014). Sexually dimorphic effects of prenatal exposure to propionic acid and lipopolysaccharide on social behavior in neonatal, adolescent, and adult rats: implications for autism spectrum disorders. International Journal of Developmental Neuroscience, 39, 68-78. https://doi.org/10.1016/j.ijdevneu.2014.04.001
Forsythe, P., Bienenstock, J., & Kunze, W. A. (2014). Vagal pathways for microbiome-brain-gut axis communication. Microbial endocrinology: the microbiota-gut-brain axis in health and disease, 115-133. https://doi.org/10.1007/978-1-4939-0897-4_5
Furness, J. B. (2006). The enteric nervous system Blackwell Publishing. Melbourne, Australia.
Furness, J. B., Callaghan, B. P., Rivera, L. R., & Cho, H. J. (2014). The enteric nervous system and gastrointestinal innervation: integrated local and central control. Microbial endocrinology: The microbiota-gut-brain axis in health and disease, 39-71. https://doi.org/10.1007/978-1-4939-0897-4_3
George, M. S., Sackeim, H. A., Rush, A. J., Marangell, L. B., Nahas, Z., Husain, M. M., ... & Ballenger, J. C. (2000). Vagus nerve stimulation: a new tool for brain research and therapy. Biological psychiatry, 47(4), 287-295. https://doi.org/10.1016/S0006-3223(99)00308-X
Graff, L. A., Walker, J. R., & Bernstein, C. N. (2009). Depression and anxiety in inflammatory bowel disease: a review of comorbidity and management. Inflammatory bowel diseases, 15(7), 1105-1118. https://doi.org/10.1002/ibd.20873
Hoban, A. E., Stilling, R. M., Ryan, F. J., Shanahan, F., Dinan, T. G., Claesson, M. J., ... & Cryan, J. F. (2016). Regulation of prefrontal cortex myelination by the microbiota. Translational psychiatry, 6(4), e774-e774. https://doi.org/10.1038/tp.2016.42
John Hopkins Medicine. The Brain-Gut Connection. Accessed May 30, 2021 https://www.hopkinsmedicine.org/health/wellness-and-prevention/the-brain-gut-connection
Johnson, C. P., & Myers, S. M. (2007). Identification and evaluation of children with autism spectrum disorders. Pediatrics, 120(5), 1183-1215. https://doi.org/10.1542/peds.2007-2361
Klin, A., Lang, J., Cicchetti, D. V., & Volkmar, F. R. (2000). Brief report: Interrater reliability of clinical diagnosis and DSM-IV criteria for autistic disorder: Results of the DSM-IV autism field trial. Journal of autism and Developmental disorders, 30(2), 163. 10.1023/A:1005415823867
Langley, J. N. (2010). The Autonomic Nervous System, Part 1 [1921] Cornell Univ.
Lim, W. Y., Subramaniam, M., Abdin, E., Vaingankar, J., & Chong, S. A. (2014). Peptic ulcer disease and mental illnesses. General hospital psychiatry, 36(1), 63-67. https://doi.org/10.1016/j.genhosppsych.2013.09.004
Luyster, R., Gotham, K., Guthrie, W., Coffing, M., Petrak, R., Pierce, K., ... & Lord, C. (2009). The Autism Diagnostic Observation Schedule—Toddler Module: A new module of a standardized diagnostic measure for autism spectrum disorders. Journal of autism and developmental disorders, 39(9), 1305-1320. https://doi.org/10.1007/s10803-009-0746-z
MacFabe, D. F. (2015). Enteric short-chain fatty acids: microbial messengers of metabolism, mitochondria, and mind: implications in autism spectrum disorders. Microbial ecology in health and disease, 26(1), 28177. 10.3402/mehd.v26.28177
Masi, A., Quintana, D. S., Glozier, N., Lloyd, A. R., Hickie, I. B., & Guastella, A. J. (2015). Cytokine aberrations in autism spectrum disorder: a systematic review and meta-analysis. Molecular psychiatry, 20(4), 440-446. https://doi.org/10.1038/mp.2014.59
McElhanon, B. O., McCracken, C., Karpen, S., & Sharp, W. G. (2014). Gastrointestinal symptoms in autism spectrum disorder: a meta-analysis. Pediatrics, 133(5), 872-883. https://doi.org/10.1542/peds.2013-3995
Meltzer, A., & Van de Water, J. (2017). The role of the immune system in autism spectrum disorder. Neuropsychopharmacology, 42(1), 284-298. https://doi.org/10.1038/npp.2016.158
Mussell, M., Kroenke, K., Spitzer, R. L., Williams, J. B., Herzog, W., & Löwe, B. (2008). Gastrointestinal symptoms in primary care: prevalence and association with depression and anxiety. Journal of psychosomatic research, 64(6), 605-612. https://doi.org/10.1016/j.jpsychores.2008.02.019
Privitera, G. J., Misenheimer, M. L., & Doraiswamy, P. M. (2013). From weight loss to weight gain: appetite changes in major depressive disorder as a mirror into brain-environment interactions. Frontiers in psychology, 4, 873. https://doi.org/10.3389/fpsyg.2013.00873
Rao, M., & Gershon, M. D. (2016). The bowel and beyond: the enteric nervous system in neurological disorders. Nature reviews Gastroenterology & hepatology, 13(9), 517. https://doi.org/10.1038/nrgastro.2016.107
Richards, J. L., Yap, Y. A., McLeod, K. H., Mackay, C. R., & Mariño, E. (2016). Dietary metabolites and the gut microbiota: an alternative approach to control inflammatory and autoimmune diseases. Clinical & translational immunology, 5(5), e82. https://doi.org/10.1038/cti.2016.29
Rosen, N. E., Lord, C., & Volkmar, F. R. (2021). The Diagnosis of Autism: From Kanner to DSM-III to DSM-5 and Beyond. Journal of Autism and Developmental Disorders, 1-18. https://doi.org/10.1007/s10803-021-04904-1
Rush, A. J., George, M. S., Sackeim, H. A., Marangell, L. B., Husain, M. M., Giller, C., ... & Goodman, R. (2000). Vagus nerve stimulation (VNS) for treatment-resistant depressions: a multicenter study. Biological psychiatry, 47(4), 276-286. https://doi.org/10.1016/S0006-3223(99)00304-2
Schain, R. J., & Freedman, D. X. (1961). Studies on 5-hydroxyindole metabolism in autistic and other mentally retarded children. The Journal of pediatrics, 58(3), 315-320. https://doi.org/10.1016/S0022-3476(61)80261-8
Sender, R., Fuchs, S., & Milo, R. (2016). Revised estimates for the number of human and bacteria cells in the body. PLoS biology, 14(8), e1002533. https://doi.org/10.1371/journal.pbio.1002533
Severance, E. G., Prandovszky, E., Castiglione, J., & Yolken, R. H. (2015). Gastroenterology issues in schizophrenia: why the gut matters. Current psychiatry reports, 17(5), 27. https://doi.org/10.1007/s11920-015-0574-0
Srikantha, P., & Mohajeri, M. H. (2019). The possible role of the microbiota-gut-brain-axis in autism spectrum disorder. International Journal of molecular sciences, 20(9), 2115. https://doi.org/10.3390/ijms20092115
Thakur, A. K., Shakya, A., Husain, G. M., Emerald, M., & Kumar, V. (2014). Gut-microbiota and mental health: current and future perspectives. J Pharmacol Clin Toxicol, 2(1), 1016.
van Sadelhoff, J. H., Perez Pardo, P., Wu, J., Garssen, J., Van Bergenhenegouwen, J., Hogenkamp, A., ... & Kraneveld, A. D. (2019). The gut-immune-brain axis in autism spectrum disorders; a focus on amino acids. Frontiers in endocrinology, 10, 247. https://doi.org/10.3389/fendo.2019.00247
Vendrik, K. E., Ooijevaar, R. E., de Jong, P. R., Laman, J. D., van Oosten, B. W., van Hilten, J. J., ... & Contarino, M. F. (2020). Fecal microbiota transplantation in neurological disorders. Frontiers in cellular and infection microbiology, 10, 98. https://doi.org/10.3389/fcimb.2020.00098
Wang, L., Christophersen, C. T., Sorich, M. J., Gerber, J. P., Angley, M. T., & Conlon, M. A. (2012). Elevated fecal short chain fatty acid and ammonia concentrations in children with autism spectrum disorder. Digestive diseases and sciences, 57(8), 2096–2102. https://doi.org/10.1007/s10620-012-2167-7
Wood, J. D., Alpers, D. H., & Andrews, P. L. R. (1999). Fundamentals of neurogastroenterology. Gut, 45(suppl 2), II6-II16. http://dx.doi.org/10.1136/gut.45.2008.ii6
Wu, S., Yi, J., Zhang, Y. G., Zhou, J., & Sun, J. (2015). Leaky intestine and impaired microbiome in an amyotrophic lateral sclerosis mouse model. Physiological reports, 3(4). https://doi.org/10.14814/phy2.12356
Published
How to Cite
Issue
Section
Copyright (c) 2021 Shreyas Singh; Avan Erhunmwunsee Dalton
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Copyright holder(s) granted JSR a perpetual, non-exclusive license to distriute & display this article.