Differences in Gut Microbiota as a Potential Factor in Alzheimer’s Disease Development
DOI:
https://doi.org/10.47611/jsrhs.v10i3.1609Keywords:
Alzheimer's Disease, Gut Microbiome, Microbiome changes, DietAbstract
Considering that humans consist of more non-human species than cells, it is critical to understand the impact of the microbiome on diseases. As Alzheimer’s disease becomes a more and more pressing issue, it may be possible to combat it or slow its progress by understanding how alterations in the gut microbiome, which can influence functions in the brain in a variety of ways, affect its development.Gut bacteria can produce neurotransmitters such as melatonin, gamma-aminobutyric acid, histamine, and acetylcholine, which can contribute or antagonize neuroinflammation and neurofibrillary tangles. It is best to balance beneficial bacteria with harmful bacteria. Additionally, using probiotics and altered diets can serve to change gut microbiome composition and influence Alzheimer’s disease development. It is important to understand microbiome-cell interactions and utilize that information to create new therapeutic strategies for Alzheimer’s disease through forms like diets, probiotics, and interventional procedures.
Downloads
References or Bibliography
Henley, D. B., Dowsett, S. A., Chen, Y.-F., Liu-Seifert, H., Grill, J. D., Doody, R. S., … Cummings, J. (2015). Alzheimer’s disease progression by geographical region in a clinical trial setting. Alzheimer's Research & Therapy, 7(1). https://doi.org/10.1186/s13195-015-0127-0
Sochocka, M., Donskow-Łysoniewska, K., Diniz, B. S., Kurpas, D., Brzozowska, E., & Leszek, J. (2018). The Gut Microbiome Alterations and Inflammation-Driven Pathogenesis of Alzheimer’s Disease—a Critical Review. Molecular Neurobiology, 56(3), 1841–1851. https://doi.org/10.1007/s12035-018-1188-4
Govindarajan, N., Agis-Balboa, R. C., Walter, J., Sananbenesi, F., & Fischer, A. (2011). Sodium Butyrate Improves Memory Function in an Alzheimer's Disease Mouse Model When Administered at an Advanced Stage of Disease Progression. Journal of Alzheimer's Disease, 26(1), 187–197. https://doi.org/10.3233/jad-2011-110080
Vogt, N. M., Kerby, R. L., Dill-Mcfarland, K. A., Harding, S. J., Merluzzi, A. P., Johnson, S. C., … Rey, F. E. (2017). Gut microbiome alterations in Alzheimer’s disease. Scientific Reports, 7(1). https://doi.org/10.1038/s41598-017-13601-y
Pistollato, F., Cano, S. S., Elio, I., Vergara, M. M., Giampieri, F., & Battino, M. (2016). Role of gut microbiota and nutrients in amyloid formation and pathogenesis of Alzheimer disease. Nutrition Reviews, 74(10), 624–634. https://doi.org/10.1093/nutrit/nuw023
Zhao, Y., Jaber, V., & Lukiw, W. J. (2017). Secretory Products of the Human GI Tract Microbiome and Their Potential Impact on Alzheimer's Disease (AD): Detection of Lipopolysaccharide (LPS) in AD Hippocampus. Frontiers in Cellular and Infection Microbiology, 7. https://doi.org/10.3389/fcimb.2017.00318
D’Argenio, V., & Sarnataro, D. (2019). Microbiome Influence in the Pathogenesis of Prion and Alzheimer’s Diseases. International Journal of Molecular Sciences, 20(19), 4704. https://doi.org/10.3390/ijms20194704
Calvani, R., Picca, A., Monaco, M. R. L., Landi, F., Bernabei, R., & Marzetti, E. (2018). Of Microbes and Minds: A Narrative Review on the Second Brain Aging. Frontiers in Medicine, 5. https://doi.org/10.3389/fmed.2018.00053
Patterson, E., Cryan, J. F., Fitzgerald, G. F., Ross, R. P., Dinan, T. G., & Stanton, C. (2014). Gut microbiota, the pharmabiotics they produce and host health. Proceedings of the Nutrition Society, 73(4), 477–489. https://doi.org/10.1017/s0029665114001426
Hylander, B. L., & Repasky, E. A. (2019). Temperature as a modulator of the gut microbiome: what are the implications and opportunities for thermal medicine? International Journal of Hyperthermia, 36(sup1), 83–89. https://doi.org/10.1080/02656736.2019.1647356
Arias, N., Arboleya, S., Allison, J., Kaliszewska, A., Higarza, S. G., Gueimonde, M., & Arias, J. L. (2020). The Relationship between Choline Bioavailability from Diet, Intestinal Microbiota Composition, and Its Modulation of Human Diseases. Nutrients, 12(8), 2340. https://doi.org/10.3390/nu12082340
Costantini, L., Molinari, R., Farinon, B., & Merendino, N. (2017). Impact of Omega-3 Fatty Acids on the Gut Microbiota. International Journal of Molecular Sciences, 18(12), 2645. https://doi.org/10.3390/ijms18122645
Jaggar, M., Rea, K., Spichak, S., Dinan, T. G., & Cryan, J. F. (2020). You’ve got male: Sex and the microbiota-gut-brain axis across the lifespan. Frontiers in Neuroendocrinology, 56, 100815. https://doi.org/10.1016/j.yfrne.2019.100815
Tomova, A., Bukovsky, I., Rembert, E., Yonas, W., Alwarith, J., Barnard, N. D., & Kahleova, H. (2019). The Effects of Vegetarian and Vegan Diets on Gut Microbiota. Frontiers in Nutrition, 6. https://doi.org/10.3389/fnut.2019.00047
Gelpi, M., Vestad, B., Hansen, S. H., Holm, K., Drivsholm, N., Goetz, A., … Trøseid, M. (2020). Impact of Human Immunodeficiency Virus–Related Gut Microbiota Alterations on Metabolic Comorbid Conditions. Clinical Infectious Diseases, 71(8). https://doi.org/10.1093/cid/ciz1235
Bonfili, L., Cecarini, V., Gogoi, O., Gong, C., Cuccioloni, M., Angeletti, M., … Eleuteri, A. M. (2020). Microbiota modulation as preventative and therapeutic approach in Alzheimer’s disease. The FEBS Journal. https://doi.org/10.1111/febs.15571
Marques, T. M., Cryan, J. F., Shanahan, F., Fitzgerald, G. F., Ross, R. P., Dinan, T. G., & Stanton, C. (2014). Gut microbiota modulation and implications for host health: Dietary strategies to influence the gut–brain axis. Innovative Food Science & Emerging Technologies, 22, 239–247. https://doi.org/10.1016/j.ifset.2013.10.016
Bonfili, L., Cecarini, V., Berardi, S., Scarpona, S., Suchodolski, J. S., Nasuti, C., … Eleuteri, A. M. (2017). Microbiota modulation counteracts Alzheimer’s disease progression influencing neuronal proteolysis and gut hormones plasma levels. Scientific Reports, 7(1). https://doi.org/10.1038/s41598-017-02587-2
Morris, J. A. (2018). Optimise the microbial flora with milk and yoghurt to prevent disease. Medical Hypotheses, 114, 13–17. https://doi.org/10.1016/j.mehy.2018.02.031
D’Aquila, P., Carelli, L. L., Rango, F. D., Passarino, G., & Bellizzi, D. (2020). Gut Microbiota as Important Mediator Between Diet and DNA Methylation and Histone Modifications in the Host. Nutrients, 12(3), 597. https://doi.org/10.3390/nu12030597
Groot, P. F. D., Frissen, M. N., Clercq, N. C. D., & Nieuwdorp, M. (2017). Fecal microbiota transplantation in metabolic syndrome: History, present and future. Gut Microbes, 8(3), 253–267. https://doi.org/10.1080/19490976.2017.1293224
Magne, F., Gotteland, M., Gauthier, L., Zazueta, A., Pesoa, S., Navarrete, P., & Balamurugan, R. (2020). The Firmicutes/Bacteroidetes Ratio: A Relevant Marker of Gut Dysbiosis in Obese Patients? Nutrients, 12(5), 1474. https://doi.org/10.3390/nu12051474
Proal, A. D., Marshall, T. G., & Lindseth, I. A. (2017, January 19). Microbe-microbe and host-microbe interactions drive microbiome dysbiosis and inflammatory processes. Discovery medicine. https://pubmed.ncbi.nlm.nih.gov/28245427/.
Das, B., & Nair, G. B. (2019). Homeostasis and dysbiosis of the gut microbiome in health and disease. Journal of Biosciences, 44(5). https://doi.org/10.1007/s12038-019-9926-y
Giau, V., Wu, S., Jamerlan, A., An, S., Kim, S., & Hulme, J. (2018). Gut Microbiota and Their Neuroinflammatory Implications in Alzheimer’s Disease. Nutrients, 10(11), 1765. https://doi.org/10.3390/nu10111765
Published
How to Cite
Issue
Section
Copyright (c) 2021 Briya Patel; Leya Joykutty
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Copyright holder(s) granted JSR a perpetual, non-exclusive license to distriute & display this article.