Circadian Rhythm, Energy Metabolism, and the Gut Microbiome: a Review
DOI:
https://doi.org/10.47611/jsrhs.v10i3.1602Keywords:
circadian rhythm, energy metabolism, intestinal microbiome, gut microbiomeAbstract
This review discussed the interrelationship between the circadian rhythm of the host and of the intestinal microbiome and the implications of this new field on energy metabolism, specifically implications relating to obesity. Circadian rhythm, or the 24-hour system that bodies use to expect and to increase receptivity to certain factors in the environment, is present in almost every organ and system. However, the data that this review utilized relates mainly to the intestinal microbiome: a group of bacteria, yeasts, and viruses that inhabit the colon, with this review’s focus placed on bacteria. This interrelationship is mainly discussed through possible effects of circadian disruption and through an analysis of different methods by which the circadian rhythm of the host and the rhythm of the microbiome interact. TRF, or time-restricted feeding, has been identified as one of the potential methods to reduce the negative consequences of circadian dysregulation on metabolic processes, and various related studies were discussed in-depth. Data from four databases were analyzed to produce a variety of both experimental and review papers. All papers that related to the topic under review were thoroughly analyzed and incorporated into the review.
Downloads
References or Bibliography
Alp Avcı, G. (2014). Bile Salts Deconjugation Using Microencapsulated Lactic Acid Bacteria Isolated from Handmade Yogurt. Journal of Food and Nutrition Research, 2(7), 340-343. https://doi.org/10.12691/jfnr-2-7-2
Archer, S. N., Laing, E. E., Möller-Levet, C. S., van der Veen, D. R., Bucca, G., Lazar, A. S., Santhi, N., Slak, A., Kabiljo, R., von Schantz, M., Smith, C. P., & Dijk, D.-J. (2014). Mistimed sleep disrupts circadian regulation of the human transcriptome. Proceedings of the National Academy of Sciences, 111(6), E682-E691. https://doi.org/10.1073/pnas.1316335111
Bass, J., & Takahashi, J. S. (2010). Circadian Integration of Metabolism and Energetics. Science, 330(6009), 1349-1354. https://doi.org/10.1126/science.1195027
Bo, S., Fadda, M., Castiglione, A., Ciccone, G., De Francesco, A., Fedele, D., Guggino, A., Parasiliti Caprino, M., Ferrara, S., Vezio Boggio, M., Mengozzi, G., Ghigo, E., Maccario, M., & Broglio, F. (2015). Is the timing of caloric intake associated with variation in diet-induced thermogenesis and in the metabolic pattern? A randomized cross-over study. International Journal of Obesity, 39(12), 1689-1695. https://doi.org/10.1038/ijo.2015.138
Deaver, J. A., Eum, S. Y., & Toborek, M. (2018). Circadian Disruption Changes Gut Microbiome Taxa and Functional Gene Composition. Frontiers in Microbiology, 9. https://doi.org/10.3389/fmicb.2018.00737
Gil-Lozano, M., Mingomataj, E. L., Wu, W. K., Ridout, S. A., & Brubaker, P. L. (2014). Circadian Secretion of the Intestinal Hormone GLP-1 by the Rodent L Cell. Diabetes, 63(11), 3674-3685. https://doi.org/10.2337/db13-1501
Gonnissen, H. K., Rutters, F., Mazuy, C., Martens, E. A., Adam, T. C., & Westerterp-Plantenga, M. S. (2012). Effect of a phase advance and phase delay of the 24-h cycle on energy metabolism, appetite, and related hormones. The American Journal of Clinical Nutrition, 96(4), 689-697. https://doi.org/10.3945/ajcn.112.037192
Govindarajan, K., MacSharry, J., Casey, P. G., Shanahan, F., Joyce, S. A., & Gahan, C. G. M. (2016). Unconjugated Bile Acids Influence Expression of Circadian Genes: A Potential Mechanism for Microbe-Host Crosstalk. PLOS ONE, 11(12), e0167319. https://doi.org/10.1371/journal.pone.0167319
Jakubowicz, D., Barnea, M., Wainstein, J., & Froy, O. (2013). High Caloric intake at breakfast vs. dinner differentially influences weight loss of overweight and obese women. Obesity, 21(12), 2504-2512. https://doi.org/10.1002/oby.20460
Jumpertz, R., Le, D. S., Turnbaugh, P. J., Trinidad, C., Bogardus, C., Gordon, J. I., & Krakoff, J. (2011). Energy-balance studies reveal associations between gut microbes, caloric load, and nutrient absorption in humans. The American Journal of Clinical Nutrition, 94(1), 58-65. https://doi.org/10.3945/ajcn.110.010132
Leone, V., Gibbons, S., Martinez, K., Hutchison, A., Huang, E., Cham, C., Pierre, J., Heneghan, A., Nadimpalli, A., Hubert, N., Zale, E., Wang, Y., Huang, Y., Theriault, B., Dinner, A., Musch, M., Kudsk, K., Prendergast, B., Gilbert, J., & Chang, E. (2015). Effects of Diurnal Variation of Gut Microbes and High-Fat Feeding on Host Circadian Clock Function and Metabolism. Cell Host & Microbe, 17(5), 681-689. https://doi.org/10.1016/j.chom.2015.03.006
Liang, X., & FitzGerald, G. A. (2017). Timing the Microbes: The Circadian Rhythm of the Gut Microbiome. Journal of Biological Rhythms, 32(6), 505-515. https://doi.org/10.1177/0748730417729066
Liu, Z., Wei, Z.-Y., Chen, J., Chen, K., Mao, X., Liu, Q., Sun, Y., Zhang, Z., Zhang, Y., Dan, Z., Tang, J., Qin, L., Chen, J.-H., & Liu, X. (2020). Acute Sleep-Wake Cycle Shift Results in Community Alteration of Human Gut Microbiome. MSphere, 5(1). https://doi.org/10.1128/mSphere.00914-19
Matenchuk, B. A., Mandhane, P. J., & Kozyrskyj, A. L. (2020). Sleep, circadian rhythm, and gut microbiota. Sleep Medicine Reviews, 53, 101340. https://doi.org/10.1016/j.smrv.2020.101340
Moller-Levet, C. S., Archer, S. N., Bucca, G., Laing, E. E., Slak, A., Kabiljo, R., Lo, J. C. Y., Santhi, N., von Schantz, M., Smith, C. P., & Dijk, D.-J. (2013). Effects of insufficient sleep on circadian rhythmicity and expression amplitude of the human blood transcriptome. Proceedings of the National Academy of Sciences, 110(12), E1132-E1141. https://doi.org/10.1073/pnas.1217154110
Parkar, S., Kalsbeek, A., & Cheeseman, J. (2019). Potential Role for the Gut Microbiota in Modulating Host Circadian Rhythms and Metabolic Health. Microorganisms, 7(2), 41. https://doi.org/10.3390/microorganisms7020041
Perry, R. J., Peng, L., Barry, N. A., Cline, G. W., Zhang, D., Cardone, R. L., Petersen, K. F., Kibbey, R. G., Goodman, A. L., & Shulman, G. I. (2016). Acetate mediates a microbiome–brain–β-cell axis to promote metabolic syndrome. Nature, 534(7606), 213-217. https://doi.org/10.1038/nature18309
RÁCZ, B., DUŠKOVÁ, M., STÁRKA, L., HAINER, V., & KUNEŠOVÁ, M. (2018). Links Between the Circadian Rhythm, Obesity and the Microbiome. Physiological Research, S409-S420. https://doi.org/10.33549/physiolres.934020
Rinninella, E., Raoul, P., Cintoni, M., Franceschi, F., Miggiano, G., Gasbarrini, A., & Mele, M. (2019). What is the Healthy Gut Microbiota Composition? A Changing Ecosystem across Age, Environment, Diet, and Diseases. Microorganisms, 7(1), 14. https://doi.org/10.3390/microorganisms7010014
Shan, Z., Li, Y., Zong, G., Guo, Y., Li, J., Manson, J. E., Hu, F. B., Willett, W. C., Schernhammer, E. S., & Bhupathiraju, S. N. (2018). Rotating night shift work and adherence to unhealthy lifestyle in predicting risk of type 2 diabetes: Results from two large US cohorts of female nurses. BMJ, k4641. https://doi.org/10.1136/bmj.k4641
Society for Science and the Public (2019-20). International Science and Engineering Fair 2019-20: International Rules & Guidelines. Washington, DC: Society for Science and the Public.
Tahara, Y., Yamazaki, M., Sukigara, H., Motohashi, H., Sasaki, H., Miyakawa, H., Haraguchi, A., Ikeda, Y., Fukuda, S., & Shibata, S. (2018). Gut Microbiota-Derived Short Chain Fatty Acids Induce Circadian Clock Entrainment in Mouse Peripheral Tissue. Scientific Reports, 8(1). https://doi.org/10.1038/s41598-018-19836-7
Thaiss, C., Zeevi, D., Levy, M., Zilberman-Schapira, G., Suez, J., Tengeler, A., Abramson, L., Katz, M., Korem, T., Zmora, N., Kuperman, Y., Biton, I., Gilad, S., Harmelin, A., Shapiro, H., Halpern, Z., Segal, E., & Elinav, E. (2014). Transkingdom Control of Microbiota Diurnal Oscillations Promotes Metabolic Homeostasis. Cell, 159(3), 514-529. https://doi.org/10.1016/j.cell.2014.09.048
Thaiss, C. A. (2018). Microbiome dynamics in obesity. Science, 362(6417), 903-904. https://doi.org/10.1126/science.aav6870
Thaiss, C. A., Levy, M., Korem, T., Dohnalová, L., Shapiro, H., Jaitin, D. A., David, E., Winter, D. R., Gury-BenAri, M., Tatirovsky, E., Tuganbaev, T., Federici, S., Zmora, N., Zeevi, D., Dori-Bachash, M., Pevsner-Fischer, M., Kartvelishvily, E., Brandis, A., Harmelin, A., . . . Elinav, E. (2016). Microbiota Diurnal Rhythmicity Programs Host Transcriptome Oscillations. Cell, 167(6), 1495-1510.e12. https://doi.org/10.1016/j.cell.2016.11.003
Voigt, R.M., Forsyth, C.B., Green, S.J., Engen, P.A., & Keshavarzian, A. (2016). Circadian Rhythm and the Gut Microbiome. International Review of Neurobiology, 131, 193-205. https://doi.org/10.1016/bs.irn.2016.07.002
Westerterp-Plantenga, M. S. (2016). Sleep, circadian rhythm and body weight: Parallel developments. Proceedings of the Nutrition Society, 75(4), 431-439. https://doi.org/10.1017/S0029665116000227
Zarrinpar, A., Chaix, A., & Panda, S. (2016). Daily Eating Patterns and Their Impact on Health and Disease. Trends in Endocrinology & Metabolism, 27(2), 69-83. https://doi.org/10.1016/j.tem.2015.11.007
Zarrinpar, A., Chaix, A., Yooseph, S., & Panda, S. (2014). Diet and Feeding Pattern Affect the Diurnal Dynamics of the Gut Microbiome. Cell Metabolism, 20(6), 1006-1017. https://doi.org/10.1016/j.cmet.2014.11.008
Published
How to Cite
Issue
Section
Copyright (c) 2021 Bailey Vergara, Leya Joykutty
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Copyright holder(s) granted JSR a perpetual, non-exclusive license to distriute & display this article.