Pathology of Gliomas and the Role Immunotherapy Plays in Combatting Glioma Proliferation
DOI:
https://doi.org/10.47611/jsrhs.v10i3.1561Keywords:
cancer, gliomas, glioblastoma, immunotherapyAbstract
Glioma, a type of tumor arising from the brain and/or spinal cord, is a relatively broad term, encompassing three main types of glial cell tumors: astrocytoma, ependymoma, and oligodendroglioma. A prognosis for a glioma can often be extremely poor, with an overall survival rate of 54.84%. With around 20,000 gliomas being diagnosed each year, it is imperative that effective treatments are developed for management of these tumors. A popular treatment pathway for the treatment of gliomas is surgery along with chemo-radiation therapy such as Temozolomide. This current treatment plan, though, has a moderate effect on lengthening glioma patients’ prognoses. The average survival of this plan is 3 to 6 months. New treatments in the field of immunotherapies may have promising effects for glioma patients’ prognoses. Arising developments in immunotherapy glioma treatment and management is an important field to investigate to further improve the effectivity of cancer treatment for glioma patients. Certain immunotherapies in trials have proven to make impactful improvements to glioma prognoses, one trial showing an increase of 2 months in median survival. This literature review will focus on the pathology and characteristics of the proliferation of malignant glioma cells and the role immunotherapy plays in combatting glioma proliferation
Downloads
References or Bibliography
Wang, J., Hu, G., & Quan, X. (2019). Analysis of the Factors Affecting the Prognosis of Glioma Patients. Open medicine (Warsaw, Poland), 14, 331–335. https://doi.org/10.1515/med-2019-0031
Mesfin FB, Al-Dhahir MA. Gliomas. [Updated 2020 Aug 10]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2020 Jan-. Available from: https://www.ncbi.nlm.nih.gov/books/NBK441874/
Chowdhary, M. M., Ene, C. I., & Silbergeld, D. L. (2015). Treatment of Gliomas: How did we get here?. Surgical neurology international, 6(Suppl 1), S85–S88. https://doi.org/10.4103/2152-7806.151348
Desai, R., Suryadevara, C. M., Batich, K. A., Farber, S. H., Sanchez-Perez, L., & Sampson, J. H. (2016). Emerging immunotherapies for glioblastoma. Expert opinion on emerging drugs, 21(2), 133–145. https://doi.org/10.1080/14728214.2016.1186643
Kim, Y., Park, J., & Choi, Y. K. (2019). The Role of Astrocytes in the Central Nervous System Focused on BK Channel and Heme Oxygenase Metabolites: A Review. Antioxidants (Basel, Switzerland), 8(5), 121. https://doi.org/10.3390/antiox8050121
Bradl, M., & Lassmann, H. (2010). Oligodendrocytes: biology and pathology. Acta neuropathologica, 119(1), 37–53. https://doi.org/10.1007/s00401-009-0601-5
Spassky N, Merkle FT, Flames N, Tramontin AD, García-Verdugo JM, Alvarez-Buylla A. Adult ependymal cells are postmitotic and are derived from radial glial cells during embryogenesis. J Neurosci. 2005 Jan 5;25(1):10-8. doi: 10.1523/JNEUROSCI.1108-04.2005. PMID: 15634762; PMCID: PMC6725217.
Altieri, R., Agnoletti, A., Quattrucci, F., Garbossa, D., Calamo Specchia, F. M., Bozzaro, M., Fornaro, R., Mencarani, C., Lanotte, M., Spaziante, R., & Ducati, A. (2014). Molecular biology of gliomas: present and future challenges. Translational medicine @ UniSa, 10, 29–37.
Vigneswaran, K., Neill, S., & Hadjipanayis, C. G. (2015). Beyond the World Health Organization grading of infiltrating gliomas: advances in the molecular genetics of glioma classification. Annals of translational medicine, 3(7), 95. https://doi.org/10.3978/j.issn.2305-5839.2015.03.57
Zhao, J., Ma, W., & Zhao, H. (2014). Loss of heterozygosity 1p/19q and survival in glioma: a meta-analysis. Neuro-oncology, 16(1), 103–112. https://doi.org/10.1093/neuonc/not145
2 Li, J., Miao, N., Liu, M., Cui, W., Liu, X., Li, X., Shi, X., Qing, S., Ma, Y., Zhang, W., & Biekemituofu, H. (2014). Clinical significance of chromosome 1p/19q loss of heterozygosity and Sox17 expression in oligodendrogliomas. International journal of clinical and experimental pathology, 7(12), 8609–8615.
Ferrer-Luna, R., Mata, M., Núñez,L., Calvar, J., Dasí, F., Arias, E., Piquer, J., Cerdá-Nicolás, M., Taratuto, A. L., Sevlever, G., Celda, B., & Martinetto, H. (2009). Loss of heterozygosity at 1p-19q induces a global change in oligodendroglial tumor gene expression. Journal of neurooncology, 95(3), 343–354. https://doi.org/10.1007/s11060-009-9944-y
Ren, X., Cui, X., Lin, S., Wang, J., Jiang, Z., Sui, D., Li, J., & Wang, Z. (2012). Co-deletion of chromosome 1p/19q and IDH1/2 mutation in glioma subsets of brain tumors in Chinese patients. PloS one, 7(3), e32764. https://doi.org/10.1371/journal.pone.0032764
Saadeh, F. S., Mahfouz, R., & Assi, H. I. (2018). EGFR as a clinical marker in glioblastomas and other gliomas. The International journal of biological markers, 33(1), 22–32. https://doi.org/10.5301/ijbm.5000301
Gladson, C. L., Prayson, R. A., & Liu, W. M. (2010). The pathobiology of glioma tumors. Annual review of pathology, 5, 33–50. https://doi.org/10.1146/annurev-pathol-121808-102109
Bethune, G., Bethune, D., Ridgway, N., & Xu, Z. (2010). Epidermal growth factor receptor (EGFR) in lung cancer: an ov erview and update. Journal of thoracic disease, 2(1), 48–51.
Xu, H., Zong, H., Ma, C., Ming, X., Shang, M., Li, K., He, X., Du, H., & Cao, L. (2017). Epidermal growth factor receptor in glioblastoma. Oncology letters, 14(1), 512–516. https://doi.org/10.3892/ol.2017.6221
McWilliams, R. R., Wieben, E. D., Rabe, K. G., Pedersen, K. S., Wu, Y., Sicotte, H., & Petersen, G. M. (2011). Prevalence of CDKN2A mutations in pancreatic cancer patients: implications for genetic counseling. European journal of human genetics : EJHG, 19(4), 472–478. https://doi.org/10.1038/ejhg.2010.198
Giacinti, C., Giordano, A. RB and cell cycle progression. Oncogene 25, 5220–5227 (2006). https://doi.org/10.1038/sj.onc.1209615
Al Hajri, Q., Dash, S., Feng, Wc. et al. Identifying multi-hit carcinogenic gene combinations: Scaling up a weighted set cover algorithm using compressed binary matrix representation on a GPU. Sci Rep 10, 2022 (2020). https://doi.org/10.1038/s41598-020-58785-y
Appin, C. L., & Brat, D. J. (2014). Molecular genetics of gliomas. Cancer journal (Sudbury, Mass.), 20(1), 66–72. https://doi.org/10.1097/PPO.0000000000000020
Ohgaki, H., & Kleihues, P. (2007). Genetic pathways to primary and secondary glioblastoma. The American journal of pathology, 170(5), 1445–1453. https://doi.org/10.2353/ajpath.2007.070011
How Is Chemotherapy Used to Treat Cancer? (2019, November 19). Retrieved February 2, 2021, from https://www.cancer.org/treatment/treatments-and-side-effects/treatment-types/chemotherapy/how-is-chemotherapy-used-to-treatcancer.html#references
Young, R. M., Jamshidi, A., Davis, G., & Sherman, J. H. (2015, June). Current trends in the surgical management and treatment of adult glioblastoma. Retrieved from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4481356/
Roy, S., Lahiri, D., Maji, T., & Biswas, J. (2015). Recurrent Glioblastoma: Where we stand. South Asian journal of cancer, 4(4), 163–173. https://doi.org/10.4103/2278-330X.175953 (Retraction published South Asian J Cancer. 2017 Oct-Dec;6(4):153)
Garside R, Pitt M, Anderson R, et al. The effectiveness and cost-effectiveness of carmustine implants and temozolomide for the treatment of newly diagnosed high-grade glioma: a systematic review and economic evaluation. 2007. In: NIHR Health Technology Assessment programme: Executive Summaries. Southampton (UK): NIHR Journals Library; 2003-. Available from: https://www.ncbi.nlm.nih.gov/books/NBK56869/
National Center for Biotechnology Information (2021). PubChem Compound Summary for CID 2578, Carmustine. Retrieved February 3, 2021 from https://pubchem.ncbi.nlm.nih.gov/compound/Carmustine.
Papait R, Magrassi L, Rigamonti D, Cattaneo E. Temozolomide and carmustine cause large-scale heterochromatin reorganization in glioma cells. Biochem Biophys Res Commun. 2009 Feb 6;379(2):434-9. doi: 10.1016/j.bbrc.2008.12.091. Epub 2008 Dec 29. PMID: 19116135.
https://www.cancerresearch.org/blog/june-2016/difference-cancer-immunotherapy-and-chemotherapy
Chui P. L. (2019). Cancer- and Chemotherapy-Related Symptoms and the Use of Complementary and Alternative Medicine. Asia-Pacific journal of oncology nursing, 6(1), 4–6. https://doi.org/10.4103/apjon.apjon_51_18
Baskar, R., Lee, K. A., Yeo, R., & Yeoh, K. W. (2012). Cancer and radiation therapy: current advances and future directions. International journal of medical sciences, 9(3), 193–199. https://doi.org/10.7150/ijms.3635
Reisz, J. A., Bansal, N., Qian, J., Zhao, W., & Furdui, C. M. (2014). Effects of ionizing radiation on biological molecules--mechanisms of damage and emerging methods of detection. Antioxidants & redox signaling, 21(2), 260–292. https://doi.org/10.1089/ars.2013.5489
Cooke, M. S., Evans, M. D., Dizdaroglu, M., & Lunec, J. (2003, July 01). Oxidative DNA damage: Mechanisms, mutation, and dise ase. Retrieved from https://faseb.onlinelibrary.wiley.com/doi/full/10.1096/fj.02-0752rev
Dhermain F. (2014). Radiotherapy of high-grade gliomas: current standards and new concepts, innovations in imaging and radiotherapy, and new therapeutic approaches. Chinese journal of cancer, 33(1), 16–24. https://doi.org/10.5732/cjc.013.10217
Smart D. (2017). Radiation Toxicity in the Central Nervous System: Mechanisms and Strategies for Injury Reduction. Seminars in radiation oncology, 27(4), 332–339. https://doi.org/10.1016/j.semradonc.2017.04.006
Chaplin D. D. (2010). Overview of the immune respons e. The Journal of allergy and clinical immunology, 125(2 Suppl 2), S3–S23. https://doi.org/10.1016/j.jaci.2009.12.980
Gonzalez, H., Hagerling, C., & Werb, Z. (2018). Roles of the immune system in cancer: from tumor initiation to metastatic pro gression. Genes & development, 32(19-20), 1267–1284. https://doi.org/10.1101/gad.314617.118
Tran, K. Q., Zhou, J., Durflinger, K. H., Langhan, M. M., Shelton, T. E., Wunderlich, J. R., Robbins, P. F., Rosenberg, S. A. , & Dudley, M. E. (2008). Minimally cultured tumor-infiltrating lymphocytes display optimal characteristics for adoptive cell therapy. Journal of immunotherapy (Hagerstown, Md. : 1997), 31(8), 742–751. https://doi.org/10.1097/CJI.0b013e31818403d5
Zhang, J., & Wang, L. (2019). The Emerging World of TCR-T Cell Trials Against Cancer: A Systematic Review. Technology in cancer research & treatment, 18, 1533033819831068. https://doi.org/10.1177/1533033819831068
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3228024/#:~:text=Bevacizumab%20acts%20by%20selectively%20binding,blood%20supply%2 0to%20tumor%20tissues.
Shengchao Xu, Lu Tang, Xizhe Li, Fan Fan, Zhixiong Liu, Immunotherapy for glioma: Current management and future application, Cancer Letters, Volume 476, 2020, Pages 1-12, ISSN 0304-3835, https://doi.org/10.1016/j.canlet.2020.02.002. (http://www.sciencedirect.com/science/article/pii/S0304383520300562) hes in glioma treatment.
Duan, S., Guo, W., Xu, Z. et al. Natural killer group 2D receptor and its ligands in cancer immune escape. Mol Cancer 18, 29 (2019). https://doi.org/10.1186/s12943-019-0956-8
D.A. Reardon, P.C. Gokhale, S.R. Klein, K.L. Ligon, S.J. Rodig, S.H. Ramkissoon, K.L. Jones, A.S. Conway, X. Liao, J. Zhou, P.Y. Wen, A.D. Van Den Abbeele, F.S. Hodi, L. Qin, N.E. Kohl, A.H. Sharpe, G. Dranoff, G.J. FreemanGlioblastoma eradication following immune checkpoint blockade in an orthotopic, immunocompetent model Canc. Immunol. Res., 4 (2016), pp. 124-135
Fecci, P. E., & Sampson, J. H. (2019). The current state of immunotherapy for gliomas: an eye toward the future, Journal of Neurosurgery JNS, 131(3), 657-666. Retrieved Jan 26, 2021, from https://thejns.org/view/journals/j-neurosurg/131/3/article-p657.xml
https://www.mskcc.org/cancer-care/types/glioma/glioma-treatment/chemotherapy-glioma
Kazazi-Hyseni, F., Beijnen, J. H., & Schellens, J. H. (2010). Bevacizumab. The oncologist, 15(8), 819–825. https://doi.org/10.1634/theoncologist.2009-0317
Song, E., Mao, T., Dong, H. et al. VEGF-C-driven lymphatic drainage enables immunosurveillance of brain tumours. Nature 577, 689–694 (2020). https://doi.org/10.1038/s41586-019-1912-x
Padera, T. P., Meijer, E. F., & Munn, L. L. (2016). The Lymphatic System in Disease Processes and Cancer Progression. Annual review of biomedical engineering, 18, 125–158. https://doi.org/10.1146/annurev-bioeng-112315-031200
Published
How to Cite
Issue
Section
Copyright (c) 2021 Divya Kothakapa; Anush Swaminathan
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Copyright holder(s) granted JSR a perpetual, non-exclusive license to distriute & display this article.