The Effect of Ligands on Noble Metal Nanoparticles as Drug Delivery Systems to the Brain
DOI:
https://doi.org/10.47611/jsrhs.v10i3.1552Keywords:
Nanoparticles, Noble Metal Nanoparticles, Drug Delivery, Cancer, Ligands, brainAbstract
metal nanoparticles have been used to address these diseases in the brain, however very few of these formulations have made it through clinical trials. This review will be discussing the role of noble metal nanoparticles as drug delivery systems specifically to the brain. A common problem many researchers and clinical physicians are facing problems because they are unable to access the brain without highly invasive surgery. Nanoparticles allow access to the brain without invasive surgery. Noble metal nanoparticles (NMNPs) are of particular interest because of their inherent characteristics which are amplified or reduced by ligands. The various ligands available change the method of transportation for a NMNPs traveling through the blood barrier. We will examine various ligands and their benefits and potential drawbacks. Furthermore, the optimal usage for each ligand and associated nanoparticle will also be examined.
This review will go into detail about pure noble metal nanoparticle, glucose, PEG, CTAB, Transferrin, Anti-Microbial Peptide, and Chitosan as coatings. All of these are commonly used among researchers. The absorptivity into various cell types in the brain along with future implications will be examined.
Downloads
References or Bibliography
References
A repertoire of biomedical applications of noble metal nanoparticles
Mohammad Azharuddin, Geyunjian H. Zhu, Debapratim Das, Erdogan Ozgurd, Lokman Uzund, Anthony P.F. Turner and Hirak K Patra
Recent Developments in Antimicrobial-Peptide-Conjugated Gold Nanoparticles.pdf. (n.d.).
Azharuddin, M., Zhu, G. H., Das, D., Ozgur, E., Uzun, L., Turner, A. P. F., & Patra, H. K. (2019). A repertoire of biomedical applications of noble metal nanoparticles. Chemical Communications, 55(49), 6964–6996. https://doi.org/10.1039/c9cc01741k
Bellocq, N. C., Pun, S. H., Jensen, G. S., & Davis, M. E. (2003). Transferrin-Containing, Cyclodextrin Polymer-Based Particles for Tumor-Targeted Gene Delivery. Bioconjugate Chemistry, 14(6), 1122–1132. https://doi.org/10.1021/bc034125f
Bhattacharya, R., & Mukherjee, P. (2008). Biological properties of “naked” metal nanoparticles. Advanced Drug Delivery Reviews, 60(11), 1289–1306. https://doi.org/10.1016/j.addr.2008.03.013
Curtis, C., Zhang, M., Liao, R., Wood, T., & Nance, E. (2017). Systems-level thinking for nanoparticle-mediated therapeutic delivery to neurological diseases. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 9(2). https://doi.org/10.1002/wnan.1422
D’souza, A. A., & Shegokar, R. (2016). Polyethylene glycol (PEG): a versatile polymer for pharmaceutical applications. Expert Opinion on Drug Delivery, 13(9), 1257–1275. https://doi.org/10.1080/17425247.2016.1182485
Fullstone, G., Nyberg, S., Tian, X., & Battaglia, G. (2016). From the Blood to the Central Nervous System: A Nanoparticle’s Journey Through the Blood–Brain Barrier by Transcytosis. In International Review of Neurobiology (1st ed., Vol. 130). Elsevier Inc. https://doi.org/10.1016/bs.irn.2016.06.001
Gromnicova, R., Davies, H. A., Sreekanthreddy, P., Romero, I. A., Lund, T., Roitt, I. M., Phillips, J. B., & Male, D. K. (2013). Glucose-coated gold nanoparticles transfer across human brain endothelium and enter astrocytes in vitro. PLoS ONE, 8(12). https://doi.org/10.1371/journal.pone.0081043
Gromnicova, R., Yilmaz, C. U., Orhan, N., Kaya, M., Davies, H., Williams, P., Romero, I. A., Sharrack, B., & Male, D. (2016). Localization and mobility of glucose-coated gold nanoparticles within the brain. Nanomedicine, 11(6), 617–625. https://doi.org/10.2217/nnm.15.215
Hsiao, I. L., Chang, C. C., Wu, C. Y., Hsieh, Y. K., Chuang, C. Y., Wang, C. F., & Huang, Y. J. (2016). Indirect effects of TiO2 nanoparticle on neuron-glial cell interactions. Chemico-Biological Interactions, 254, 34–44. https://doi.org/10.1016/j.cbi.2016.05.024
Huang, Y., He, L., Li, G., Zhai, N., Jiang, H., & Chen, Y. (2014). Role of helicity of α-helical antimicrobial peptides to improve specificity. Protein and Cell, 5(8), 631–642. https://doi.org/10.1007/s13238-014-0061-0
Huerta-García, E., Márquez-Ramírez, S. G., Ramos-Godinez, M. del P., López-Saavedra, A., Herrera, L. A., Parra, A., Alfaro-Moreno, E., Gómez, E. O., & López-Marure, R. (2015). Internalization of titanium dioxide nanoparticles by glial cells is given at short times and is mainly mediated by actin reorganization-dependent endocytosis. NeuroToxicology, 51, 27–37. https://doi.org/10.1016/j.neuro.2015.08.013
Hutter, E., Boridy, S., Labrecque, S., Lalancette-Hébert, M., Kriz, J., Winnik, F. M., & Maysinger, D. (2010). Microglial response to gold nanoparticles. ACS Nano, 4(5), 2595–2606. https://doi.org/10.1021/nn901869f
Jafari, M., Doustdar, F., & Mehrnejad, F. (2019). Molecular Self-Assembly Strategy for Encapsulation of an Amphipathic α-Helical Antimicrobial Peptide into the Different Polymeric and Copolymeric Nanoparticles. Journal of Chemical Information and Modeling, 59(1), 550–563. https://doi.org/10.1021/acs.jcim.8b00641
Ji, J., Moquin, A., Bertorelle, F., KY Chang, P., Antoine, R., Luo, J., McKinney, R. A., & Maysinger, D. (2019). Organotypic and primary neural cultures as models to assess effects of different gold nanostructures on glia and neurons. Nanotoxicology, 13(3), 285–304. https://doi.org/10.1080/17435390.2018.1543468
Klębowski, B., Depciuch, J., Parlińska-Wojtan, M., & Baran, J. (2018). Applications of noble metal-based nanoparticles in medicine. International Journal of Molecular Sciences, 19(12). https://doi.org/10.3390/ijms19124031
Kong, F. Y., Zhang, J. W., Li, R. F., Wang, Z. X., Wang, W. J., & Wang, W. (2017). Unique roles of gold nanoparticles in drug delivery, targeting and imaging applications. Molecules, 22(9). https://doi.org/10.3390/molecules22091445
Kumar, C. G., Mamidyala, S. K., Reddy, M. N., & Reddy, B. V. S. (2012). Silver glyconanoparticles functionalized with sugars of sweet sorghum syrup as an antimicrobial agent. Process Biochemistry, 47(10), 1488–1495. https://doi.org/10.1016/j.procbio.2012.05.023
Maysinger, D., & Ji, J. (2019). Nanostructured Modulators of Neuroglia. Current Pharmaceutical Design, 25(37), 3905–3916. https://doi.org/10.2174/1381612825666190912163339
Mili, B., Das, K., Kumar, A., Saxena, A. C., Singh, P., Ghosh, S., & Bag, S. (2018). Preparation of NGF encapsulated chitosan nanoparticles and its evaluation on neuronal differentiation potentiality of canine mesenchymal stem cells. Journal of Materials Science: Materials in Medicine, 29(1), 1–13. https://doi.org/10.1007/s10856-017-6008-2
Morales-Avila, E., Ferro-Flores, G., Ocampo-Garciá, B. E., López-Téllez, G., López-Ortega, J., Rogel-Ayala, Di. G., & Sánchez-Padilla, Di. (2017). Antibacterial Efficacy of Gold and Silver Nanoparticles Functionalized with the Ubiquicidin (29-41) Antimicrobial Peptide. Journal of Nanomaterials, 2017. https://doi.org/10.1155/2017/5831959
Rai, M., Ingle, A. P., Birla, S., Yadav, A., & Santos, C. A. Dos. (2016). Strategic role of selected noble metal nanoparticles in medicine. Critical Reviews in Microbiology, 42(5), 696–719. https://doi.org/10.3109/1040841X.2015.1018131
Razavi, S., Seyedebrahimi, R., & Jahromi, M. (2019). Biodelivery of nerve growth factor and gold nanoparticles encapsulated in chitosan nanoparticles for schwann-like cells differentiation of human adipose-derived stem cells. Biochemical and Biophysical Research Communications, 513(3), 681–687. https://doi.org/10.1016/j.bbrc.2019.03.189
Rizvi, S. M. D., Hussain, T., Ahmed, A. B. F., Alshammari, T. M., Moin, A., Ahmed, M. Q., Barreto, G. E., Kamal, M. A., & Ashraf, G. M. (2018). Gold nanoparticles: A plausible tool to combat neurological bacterial infections in humans. Biomedicine and Pharmacotherapy, 107(April), 7–18. https://doi.org/10.1016/j.biopha.2018.07.130
Sharma, G., Lakkadwala, S., Modgil, A., & Singh, J. (2016). The role of cell-penetrating peptide and transferrin on enhanced delivery of drug to brain. International Journal of Molecular Sciences, 17(6). https://doi.org/10.3390/ijms17060806
Swain, S., Sahu, P., Beg, S., & Babu, S. (2016). Nanoparticles for Cancer Targeting: Current and Future Directions. Current Drug Delivery, 13(8), 1290–1302. https://doi.org/10.2174/1567201813666160713121122
Tripathi, R. M., Shrivastav, A., & Shrivastav, B. R. (2015). Biogenic gold nanoparticles: As a potential candidate for brain tumor directed drug delivery. Artificial Cells, Nanomedicine and Biotechnology, 43(5), 311–317. https://doi.org/10.3109/21691401.2014.885445
Wiley, D. T., Webster, P., Gale, A., & Davis, M. E. (2013). Transcytosis and brain uptake of transferrin-containing nanoparticles by tuning avidity to transferrin receptor. Proceedings of the National Academy of Sciences of the United States of America, 110(21), 8662–8667. https://doi.org/10.1073/pnas.1307152110
Xu, L., Wang, Y. Y., Huang, J., Chen, C. Y., Wang, Z. X., & Xie, H. (2020). Silver nanoparticles: Synthesis, medical applications and biosafety. Theranostics, 10(20), 8996–9031. https://doi.org/10.7150/thno.45413
Published
How to Cite
Issue
Section
Copyright (c) 2021 Shailee Shroff; Dr. Chad Curtis
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Copyright holder(s) granted JSR a perpetual, non-exclusive license to distriute & display this article.