PTGS2, CD133, CDK5 knockout comparison by CRISPR CAS-9 system in UV-Induced and Metastatic Melanoma

Authors

  • Rohan Priyam Mount Pisgah Christian School
  • Nicole Guilz Columbia University
  • Allison Cuppia Mount Pisgah Christian School

DOI:

https://doi.org/10.47611/jsrhs.v10i2.1510

Keywords:

CRISPR, CAS9, Melanoma, Metastasis, CD133, CDK5, MMP2, MMP9, PTGS2, Knockdown, Knockout.

Abstract

CRISPR Cas9 systems have become an increasingly powerful method to express and repress gene expression. Within cancer research, CRISPR Cas9 technology can be regarded as a tool to knockout or knockin specific genes, ultimately causing metastasis. In this research, the knockout and knockin of the PTGS2, CD133, CDK5 genes are compared to determine whether a knockout or knockin of a specific gene can improve a metastatic melanoma patient’s prognosis. Melanoma is a type of skin cancer with a stage IV survival rate of 22.5%. Several melanoma patients have mutations in the PTGS2, CD133, CDK5 genes, causing metastasis. The knockdown of the PTGS2 gene reduces expression, which inhibits cell proliferation, migration, and invasiveness, modulates immune response by impairing myeloid-derived suppressor cell differentiation, and reduces tumor development and metastasis in vivo. In comparison, the induced knockdown of the CD133 gene results in enhanced invasion and improved MMP2/MMP9 concentrations. MMP2/MMP9 concentrations encode for proteins that degrade type IV collagen, which considers the CD133 gene expression as a key role in tumor growth and metastasis. Lastly, the knockin of CDK5 may be a promising alternative as it controls melanoma cell motility, invasiveness, and metastatic spread.

Downloads

Download data is not yet available.

Author Biography

Allison Cuppia, Mount Pisgah Christian School

AP Biology Teacher

References or Bibliography

Ercolano, G., De Cicco, P., Rubino, V., Terrazzano, G., Ruggiero, G., Carriero, R., Kunderfranco, P., & Ianaro, A. (2019). Knockdown of PTGS2 by CRISPR/CAS9 system designates a new potential gene target for melanoma treatment. Frontiers in Pharmacology, 10(December), 1–12. https://doi.org/10.3389/fphar.2019.01456

Chiou, S., Winters, I. P., Wang, J., Naranjo, S., Dudgeon, C., Tamburini, F. B., Brady, J. J., Yang, D., Grüner, B. M., Chuang, C., Caswell, D. R., Zeng, H., Chu, P., Kim, G. E., Carpizo, D. R., Kim, S. K., & Winslow, M. M. (2015). 2015.9. 1576–1585. https://doi.org/10.1101/gad.264861.115.1576

Dorothy A. Shead, M. D. (2018). NCCN Clinical Practice Guidelines in Oncology (NCCN Guidelines®) Version 1. 2017. E NCCN Quick Guide.

Survival, F. N. (2013). Men Women Net Survival (%). 2013.

Ovchinnikov, D. A., Korn, O., Virshup, I., Wells, C. A., & Wolvetang, E. J. (2018). The Impact of APP on Alzheimer-like Pathogenesis and Gene Expression in Down Syndrome iPSC-Derived Neurons. Stem Cell Reports, 11(1), 32–42. https://doi.org/10.1016/j.stemcr.2018.05.004

Mosqueira, D., Mannhardt, I., Bhagwan, J. R., Lis-Slimak, K., Katili, P., Scott, E., Hassan, M., Prondzynski, M., Harmer, S. C., Tinker, A., Smith, J. G. W., Carrier, L., Williams, P. M., Gaffney, D., Eschenhagen, T., Hansen, A., & Denning, C. (2018). CRISPR/Cas9 editing in human pluripotent stemcell-cardiomyocytes highlights arrhythmias, hypocontractility, and energy depletion as potential therapeutic targets for hypertrophic cardiomyopathy. European Heart Journal, 39(43), 3879–3892. https://doi.org/10.1093/eurheartj/ehy249

Callahan, S. J., Tepan, S., Zhang, Y. M., Lindsay, H., Burger, A., Campbell, N. R., Kim, I. S., Hollmann, T. J., Studer, L., Mosimann, C., & White, R. M. (2018). Cancer modeling by Transgene Electroporation in Adult Zebrafish (TEAZ). Disease Models & Mechanisms, 11(9). https://doi.org/10.1242/dmm.034561

Maraveyas, A., Johnson, M. J., Xiao, Y. P., & Noble, S. (2010). Malignant melanoma as a target malignancy for the study of the anti-metastatic properties of the heparins. Cancer and Metastasis Reviews, 29(4), 777–784. https://doi.org/10.1007/s10555-010-9263-y

Tafazoli, A., Behjati, F., Farhud, D. D., & Abbaszadegan, M. R. (2019). Combination of genetics and nanotechnology for down syndrome modification: A potential hypothesis and review of the literature. Iranian Journal of Public Health, 48(3), 371–378. https://doi.org/10.18502/ijph.v48i3.878

American Cancer Society. (2009). Melanoma of the Skin Staging. 1.

Deng, H., Tan, S., Gao, X., Zou, C., Xu, C., Tu, K., Song, Q., Fan, F., Huang, W., & Zhang, Z. (2020). Cdk5 knocking out mediated by CRISPR-Cas9 genome editing for PD-L1 attenuation and enhanced antitumor immunity. Acta Pharmaceutica Sinica B, 10(2), 358–373. https://doi.org/10.1016/j.apsb.2019.07.004

Kim, I. S., Heilmann, S., Kansler, E. R., Zhang, Y., Zimmer, M., Ratnakumar, K., Bowman, R. L., Simon-Vermot, T., Fennell, M., Garippa, R., Lu, L., Lee, W., Hollmann, T., Xavier, J. B., & White, R. M. (2017). Microenvironment-derived factors driving metastatic plasticity in melanoma. Nature Communications, 8(May 2016), 1–11. https://doi.org/10.1038/ncomms14343

Mirus Bio LLC. (2018). Genome Editing : Crispr / Cas9 Delivery Methods.

Shalem, O., Sanjana, N. E., Hartenian, E., Shi, X., Scott, D. A., Heckl, D., Ebert, B. L., Root, D. E., & Doench, J. G. (2014). Shalem et al., 2014. Science, 343(6166), 84–87. https://doi.org/10.1126/science.1247005.Genome-Scale

Huang, H. (2018). Matrix metalloproteinase-9 (MMP-9) as a cancer biomarker and MMP-9 biosensors: Recent advances. Sensors (Switzerland), 18(10), 5–7. https://doi.org/10.3390/s18103249

Lowe, M. M., Boothby, I., Clancy, S., Ahn, R. S., Liao, W., Nguyen, D. N., Schumann, K., Marson, A., Mahuron, K. M., Kingsbury, G. A., Liu, Z., Sandoval, P. M., Rodriguez, R. S., Pauli, M. L., Taravati, K., Arron, S. T., Neuhaus, I. M., Harris, H. W., Kim, E. A., … Rosenblum, M. D. (2019). Regulatory T cells use arginase 2 to enhance their metabolic fitness in tissues. JCI Insight, 4(24). https://doi.org/10.1172/jci.insight.129756

Snyder, D., Wang, Y., & Kaetzel, D. M. (2020). A rare subpopulation of melanoma cells with low expression of metastasis suppressor NME1 is highly metastatic in vivo. Scientific Reports, 10(1), 1971. https://doi.org/10.1038/s41598-020-58996-3

Wei, J., Long, L., Zheng, W., Dhungana, Y., Lim, S. A., Wang, Y., Wang, Y., Qian, C., Xu, B., Huang, H., Yu, J., Doench, J. G., & Geiger, T. L. (2020). HHS Public Access. 576(7787), 471–476. https://doi.org/10.1038/s41586-019-1821-z.Targeting

Takeda, H., Kataoka, S., Nakayama, M., Ali, M. A. E., Oshima, H., Yamamoto, D., Park, J. W., Takegami, Y., An, T., Jenkins, N. A., Copeland, N. G., & Oshima, M. (2019). CRISPR-Cas9-mediated gene knockout in intestinal tumor organoids provides functional validation for colorectal cancer driver genes. Proceedings of the National Academy of Sciences of the United States of America, 116(31), 15635–15644. https://doi.org/10.1073/pnas.1904714116

Pros and cons of ZNFs, TALENs, and CRISPR_Cas. (n.d.).

Lewis, B. C., Klimstra, D. S., & Varmus, H. E. (2003). The c-myc and PyMT oncogenes induce different tumor types in a somatic mouse model for pancreatic cancer. Genes and Development, 17(24), 3127–3138. https://doi.org/10.1101/gad.1140403

Falkson, C. I. (1995). Treatment of metastatic malignant melanoma. Anti-Cancer Drugs, 6(6), 709–716. https://doi.org/10.1097/00001813-199512000-00001

Vermersch, E., Jouve, C., & Hulot, J. S. (2020). CRISPR/Cas9 gene-editing strategies in cardiovascular cells. Cardiovascular Research, 116(5), 894–907. https://doi.org/10.1093/cvr/cvz250

Del Castillo Velasco-Herrera, M., van der Weyden, L., Nsengimana, J., Speak, A. O., Sjöberg, M. K., Bishop, D. T., Jönsson, G., Newton-Bishop, J., & Adams, D. J. (2018). Comparative genomics reveals that loss of lunatic fringe (LFNG) promotes melanoma metastasis. Molecular Oncology, 12(2), 239–255. https://doi.org/10.1002/1878-0261.12161

Ideno, N., Yamaguchi, H., Okumura, T., Huang, J., Brun, M. J., Ho, M. L., Suh, J., Gupta, S., Maitra, A., & Ghosh, B. (2019). A pipeline for rapidly generating genetically engineered mouse models of pancreatic cancer using in vivo CRISPR-Cas9-mediated somatic recombination. Laboratory Investigation, 99(8), 1233–1244. https://doi.org/10.1038/s41374-018-0171-z

Lezcano, C., Jungbluth, A. A., Nehal, K. S., Hollmann, T. J., Busam, K. J., Sloan, M., Cancer, K., Sloan, M., & Cancer, K. (2019). HHS Public Access. 42(11), 1456–1465. https://doi.org/10.1097/PAS.0000000000001134.PRAME

Koh, H. K. (1996). Prevention and Early Detection Strategies for Melanoma and Skin Cancer. In Archives of Dermatology (Vol. 132, Issue 4, p. 436). https://doi.org/10.1001/archderm.1996.03890280098014

Rashid, O. M., & Takabe, K. (2014). Does removal of the primary tumor in metastatic breast cancer improve survival? Journal of Women’s Health, 23(2), 184–188. https://doi.org/10.1089/jwh.2013.4517

Seidler, B., Schmidt, A., Mayr, U., Nakhai, H., Schmid, R. M., Schneider, G., & Saur, D. (2008). A Cre-loxP-based mouse model for conditional somatic gene expression and knockdown in vivo by using avian retroviral vectors. Proceedings of the National Academy of Sciences of the United States of America, 105(29), 10137–10142. https://doi.org/10.1073/pnas.0800487105

Bloh, K. M., Bialk, P. A., Gopalakrishnapillai, A., Kolb, E. A., & Kmiec, E. B. (2017). CRISPR/Cas9-Directed Reassignment of the GATA1 Initiation Codon in K562 Cells to Recapitulate AML in Down Syndrome. Molecular Therapy - Nucleic Acids, 7(June), 288–298. https://doi.org/10.1016/j.omtn.2017.04.009

Roewenstrunk, J., Di Vona, C., Chen, J., Borras, E., Dong, C., Arató, K., Sabidó, E., Huen, M. S. Y., & de la Luna, S. (2019). A comprehensive proteomics-based interaction screen that links DYRK1A to RNF169 and to the DNA damage response. Scientific Reports, 9(1), 1–14. https://doi.org/10.1038/s41598-019-42445-x

Bouche, G., Jezdic, S., Dummer, R., & Jost, L. (2014). Melanoma: a guide for patients - Information based on ESMO Clinical Practice Guidelines. 1–21.

Akagi, K., Symer, D. E., Mohler, P. J., Ma, J., & Paul, M. L. (2018). Cardiac Function in Dystrophic Mice. Circ Res., 121(8), 923–929. https://doi.org/10.1161/CIRCRESAHA.117.310996.In

Wang, T., Wei, J. J., Sabatini, D. M., & Lander, E. S. (2012). Genetic screens in human cells using the CRISPR-Cas9 system. BMJ Supportive and Palliative Care, 2(3), 256–263. https://doi.org/10.1136/bmjspcare-2011-000063

Albert, D. M., Niffenegger, A. S., & Willson, J. K. (1992). Treatment of metastatic uveal melanoma: review and recommendations. Survey of Ophthalmology, 36(6), 429–438. https://doi.org/10.1016/s0039-6257(05)80024-4

Christodoulou, E., Rashid, M., Pacini, C., Alastair, D., Robertson, H., van Groningen, T., Teunisse, A. F. A. S., Iorio, F., Jochemsen, A. G., Adams, D. J., & van Doorn, R. (2020). Analysis of CRISPR-Cas9 screens identify genetic dependencies in melanoma. Pigment Cell & Melanoma Research. https://doi.org/10.1111/pcmr.12919

Fitzpatrick, T. B., Montgomery, H., & Lerner, A. B. (1954). Pathogenesis of Generalized Dermal Pigmentation Secondary to Malignant Melanoma and Melanuria*. Journal of Investigative Dermatology, 22(3), 163–172. https://doi.org/10.1038/jid.1954.22

Meyers, R. M., Bryan, J. G., Mcfarland, J. M., Weir, B. A., Ann, E., Xu, H., Dharia, N. V, Montgomery, P. G., Cowley, G. S., Pantel, S., Goodale, A., Lee, Y., Ali, L. D., Jiang, G., Lubonja, R., Harrington, W. F., Strickland, M., Wu, T., Hawes, D. C., … David, E. (2018). HHS Public Access. 49(12), 1779–1784. https://doi.org/10.1038/ng.3984.Computational

Peter K. Smith Jess Mahdavi Manuel Carvalho Sonja Fisher Shanette Russell Neil Tippett. (2008). J @ Onlinelibrary.Wiley.Com. In Journal of Child Psychology and Psychiatry (Vol. 49, Issue 4, p. [1] Peter K. Smith Jess Mahdavi Manuel Carvalho So). https://doi.org/10.1080/0144039X.2013.791174

Ekman, F. K., Ojala, D. S., Adil, M. M., Lopez, P. A., Schaffer, D. V., & Gaj, T. (2019). CRISPR-Cas9-Mediated Genome Editing Increases Lifespan and Improves Motor Deficits in a Huntington’s Disease Mouse Model. Molecular Therapy - Nucleic Acids, 17(September), 829–839. https://doi.org/10.1016/j.omtn.2019.07.009

Shin, J. W., Kim, K. H., Chao, M. J., Atwal, R. S., Gillis, T., MacDonald, M. E., Gusella, J. F., & Lee, J. M. (2016). Permanent inactivation of Huntington’s disease mutation by personalized allele-specific CRISPR/Cas9. Human Molecular Genetics, 25(20), 4566–4576. https://doi.org/10.1093/hmg/ddw286

Reed, K. B., Cook-Norris, R. H., & Brewer, J. D. (2012). The cutaneous manifestations of metastatic malignant melanoma. International Journal of Dermatology, 51(3), 243–249. https://doi.org/10.1111/j.1365-4632.2011.05245.x

Non-Homologous End Joining, Homology-Directed Repair - Beckman Coulter. (n.d.). https://www.beckman.com/support/faq/research/nhej-hdr-difference

CRISPR enters its first human clinical trials | Science News. (n.d.). https://www.sciencenews.org/article/crispr-gene-editor-first-human-clinical-trials

Addgene. (2015). CRISPR 101: Non-Homologous End Joining. In Addgenes’s blog.

Simbulan-Rosenthal, C. M., Gaur, A., Zhou, H., Abdussamad, M., Qin, Q., Dougherty, R., Aljehane, L., Kuo, L. W., Vakili, S., Karna, K., Clark, H., McCarron, E., & Rosenthal, D. S. (2019). CD133 Is Associated with Increased Melanoma Cell Survival after Multikinase Inhibition. Journal of Oncology, 2019. https://doi.org/10.1155/2019/6486173

Weizmann Institute of Science. (2020). PTGS2 Gene - GeneCards | PGH2 Protein | PGH2 Antibody. https://www.genecards.org/cgi-bin/carddisp.pl?gene=PTGS2&keywords=ptgs2

Kollmann, K., Briand, C., Bellutti, F., Schicher, N., Blunder, S., Zojer, M., & Hoeller, C. (2019). The interplay of CDK4 and CDK6 in melanoma. Oncotarget, 10(14), 1346–1359. https://doi.org/10.18632/oncotarget.26515

Melanoma strikes men harder. (n.d.). https://www.aad.org/public/diseases/skin-cancer/types/common/melanoma/men-50

CDK4 Gene - GeneCards _ CDK4 Protein _ CDK4 Antibody. (n.d.).

USCSChart. (n.d.).

Stage 2 Melanoma - Melanoma Research Alliance. (n.d.).

Definition of cell proliferation - NCI Dictionary of Cancer Terms - National Cancer Institute. (n.d.). https://www.cancer.gov/publications/dictionaries/cancer-terms?cdrid=46479

Kato-Inui, T., Takahashi, G., Hsu, S., & Miyaoka, Y. (2018). Clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 with improved proof-reading enhances homology-directed repair. Nucleic Acids Research, 46(9), 4677–4688. https://doi.org/10.1093/nar/gky264

Drugs Approved for Melanoma - National Cancer Institute. (n.d.). https://www.cancer.gov/about-cancer/treatment/drugs/melanoma

Systemic Therapy _ Moffitt. (n.d.).

Stage 3 Melanoma. (n.d.). http://www.bad.org.uk/shared/get-file.ashx?id=103&itemtype=document

Li, H., Yang, Y., Hong, W., Huang, M., Wu, M., & Zhao, X. (2020). Applications of genome editing technology in the targeted therapy of human diseases: mechanisms, advances and prospects. In Signal Transduction and Targeted Therapy (Vol. 5, Issue 1). https://doi.org/10.1038/s41392-019-0089-y

, N., Gaj, T., Gersbach, C. A., & Barbas, C. F. (2008). ZFN, TALEN and CRISPR/Cas-based methods for genome engineering NIH Public Access. Bone, 23(1), 1–7. https://doi.org/10.1016/j.tibtech.2013.04.004.ZFN

Stage 4 Melanoma - Melanoma Research Alliance. (n.d.).

Definition of COLPOSCOPY hemangioma - NCI Dictionary of Cancer Terms - National Cancer Institute NCI Dictionary of Cancer Terms (p. 2019). (2019).

Stage 1 Melanoma - Melanoma Research Alliance. (n.d.).

Deshpande, K., Vyas, A., Balakrishnan, A., & Vyas, D. (2016). Clustered Regularly Interspaced Short Palindromic Repeats/Cas9 Genetic Engineering: Robotic Genetic Surgery. American Journal of Robotic Surgery, 2(1), 49–52. https://doi.org/10.1166/ajrs.2015.1023

Norman, A. (1952). On the origin of cancer foci. Cancer, 5(3), 581–582. https://doi.org/10.1002/1097-0142(195205)5:3<581::AID-CNCR2820050319>3.0.CO;2-Q

Rodriguez-Puebla, M. L., Miliani de Marval, P. L., LaCava, M., Moons, D. S., Kiyokawa, H., & Conti, C. J. (2002). Cdk4 Deficiency Inhibits Skin Tumor Development But Does Not Affect Normal Keratinocyte Proliferation. American Journal of Pathology, 161(2), 405–411. https://doi.org/10.1016/S0002-9440(10)64196-X

Saha, S. K., Islam, S. M. R., Kwak, K. S., Rahman, M. S., & Cho, S. G. (2020). PROM1 and PROM2 expression differentially modulates clinical prognosis of cancer: a multi-omics analysis. Cancer Gene Therapy, 27(3–4), 147–167. https://doi.org/10.1038/s41417-019-0109-7

Bhatia, S., Tykodi, S. S., & Thompson, J. A. (2009). Treatment of metastatic melanoma: An overview. Oncology, 23(6), 488–496.

Sandru, A., Voinea, S., Panaitescu, E., & Blidaru, A. (2014). Survival rates of patients with metastatic malignant melanoma. Journal of Medicine and Life, 7(4), 572–576.

Freeman. (2018). 乳鼠心肌提取 HHS Public Access. Physiology & Behavior, 176(1), 139–148. https://doi.org/10.1111/phpp.12329.Mechanisms

Simbulan-Rosenthal, C. M., Dougherty, R., Vakili, S., Ferraro, A. M., Kuo, L. W., Alobaidi, R., Aljehane, L., Gaur, A., Sykora, P., Glasgow, E., Agarwal, S., & Rosenthal, D. S. (2019). CRISPR-Cas9 knockdown and induced expression of CD133 reveal essential roles in melanoma invasion and metastasis. Cancers, 11(10), 1–23. https://doi.org/10.3390/cancers11101490

Zeng, H., Jorapur, A., Shain, A. H., Lang, U. E., Zhang, Y., Mcneal, A. S., Botton, T., Lin, J., Bastian, I. N., Yu, R., North, J. P., Pincus, L., Ruben, S., Joseph, N. M., Yeh, I., Bastian, B. C., & Judson, R. L. (2019). activation. 34(1), 56–68. https://doi.org/10.1016/j.ccell.2018.05.014.Bi-allelic

Doudna, J. A., & Charpentier, E. (2014). The new frontier of genome engineering with CRISPR-Cas9. Science, 346(6213). https://doi.org/10.1126/science.1258096

Published

07-01-2021

How to Cite

Priyam, R., Guilz, N., & Cuppia, A. (2021). PTGS2, CD133, CDK5 knockout comparison by CRISPR CAS-9 system in UV-Induced and Metastatic Melanoma . Journal of Student Research, 10(2). https://doi.org/10.47611/jsrhs.v10i2.1510

Issue

Section

HS Review Articles