The Microbiota-Gut-Brain Axis: A New Direction in Research on Depression

Authors

  • Emma Chen Phillips Exeter Academy
  • Robert E. Clark University of San Deigo

DOI:

https://doi.org/10.47611/jsrhs.v10i2.1504

Keywords:

gut microbiota, gut microbiome, gut-brain axis, microbiota-gut-brain axis, depression, mental health, neuroinflammation, HPA axis, vagus nerve, short-chain fatty acid, neurotransmitter

Abstract

Depression is a global health crisis that becomes increasingly urgent as depression rates continue to rise. While impressive progress has been made in understanding and treating depression, we face many more unknowns, and existing treatment options are not effective for all patients and all depressive episodes. In recent years, the microbiota-gut-brain axis has emerged as a promising research direction as increasing evidence shows the gut microbiota and the brain to be closely linked. This review presents the most compelling evidence for a bidirectional relationship between the gut microbiota and the brain, zooms in to examine putative neural, neuroimmune, neuroendocrine, and neurometabolic mechanisms involved in bottom-up communication, reviews existing evidence for probiotics, and discusses challenges and future directions of the field. Further research on the microbiota-gut-brain axis could provide a better understanding of the pathogenesis of depression and reveal opportunities for novel preventions and treatments.

Downloads

Download data is not yet available.

References or Bibliography

Akkasheh, G., Kashani-Poor, Z., Tajabadi-Ebrahimi, M., Jafari, P., Akbari, H., Taghizadeh, M., Memarzadeh, M.R., Asemi, Z., & Esmaillzadeh, A. (2015). Clinical and metabolic response to probiotic administration in patients with major depressive disorder: a randomized, double-blind, placebo-controlled trial. Nutrition, 32(3) 315–320. https://pubmed.ncbi.nlm.nih.gov/26706022/

Barnes, J., Mondelli, V., & Pariante, C. M. (2017). Genetic contributions of inflammation to depression. Neuropsychopharmacology, 42(1), 81–98. https://pubmed.ncbi.nlm.nih.gov/27555379/

Bercik, P. Verdu, E.F., Foster, J.A., Macri, J, Potter, M., Huang, X., Malinowsk,i P., Jackson, W., Blennerhassett, P., Neufeld, K.A, Lu, J., Khan, W.I., Corthesy-Theulaz, I., Cherbut, C., Bergonzelli, G.E., & Collins, S.M. (2010). Chronic gastrointestinal inflammation induces anxiety-like behavior and alters central nervous system biochemistry in mice. Gastroenterology, 139(6), 2102–2112. https://pubmed.ncbi.nlm.nih.gov/20600016/

Bercik, P., Park, A.J., Sinclair, D., Khoshdel, A., Lu, J., Huang, X., Deng, Y., Blennerhassett, P.A., Fahnestock, M., Moine D., Berger B., Huizinga J.D., Kunze W., McLean P.G., Bergonzelli G.E., Collins S.M., &Verdu E.F. (2011). The anxiolytic effect of Bifidobacterium longum NCC3001 involves vagal pathways for gut– brain communication. Neurogastroenterol. Motil, 23(12), 1132–1139. https://pubmed.ncbi.nlm.nih.gov/21988661/

Berthoud, H.R., Neuhuber, W.L. (2000). Functional and chemical anatomy of the afferent vagal system. Auton Neurosci, 85(1-3), 1–17. https://pubmed.ncbi.nlm.nih.gov/11189015/

Bluthé, R.M., Michaud, B., Kelley, K.W., & Dantzer, R. (1996). Vagotomy attenuates behavioural effects of interleukin-1 injected peripherally but not centrally. Neuroreport, 7(9), 1485-8. https://pubmed.ncbi.nlm.nih.gov/8856703/

Bluthé, R.M., Walter, V., Parnet, P., Layé, S., Lestage, J., Verrier, D., Poole, S., Stenning, B.E., Kelley, K.W., &Dantzer, R. (1994). Lipopolysaccharide induces sickness behaviour in rats by a vagal mediated mechanism. C R Acad Sci III, 317(6, 499-503. https://pubmed.ncbi.nlm.nih.gov/7987701/

Bravo, J.A., Forsythe, P., Chew, M.V., Escaravage, E., Savignac, H.M., Dinan, T.G., Bienenstock, J., & Cryan, J.F. (2011). Ingestion of Lactobacillus strain regulates emotional behavior and central GABA receptor expression in a mouse via the vagus nerve. Proc Natl Acad Sci USA, 108(38), 16050–16055. https://pubmed.ncbi.nlm.nih.gov/21876150/

Clarke, G., Grenham, S., Scully, P., Fitzgerald, P., Moloney, R.D., Shanahan, F., Dinan, T.G., & Cryan, J.F. (2013). The microbiome-gut-brain axis during early life regulates the hippocampal serotonergic system in a sex-dependent manner. Mol Psychiatry, 18(6), 666–673. https://pubmed.ncbi.nlm.nih.gov/22688187/

Collins, S.M., Kassam, Z., & Bercik, P. (2013). The adoptive transfer of behavioral phenotype via the intestinal microbiota: experimental evidence and clinical implications. Curr Opin Microbiol, 16(3), 240–245. https://pubmed.ncbi.nlm.nih.gov/23845749/

Collins, S.M., Surette, M., & Bercik, P. (2012). The interplay between the intestinal microbiota and the brain. Nat Rev Microbiol,10(11), 735-42. https://pubmed.ncbi.nlm.nih.gov/23000955/

Crook, N., Ferreiro, A., Gasparrini, A.J., Pesesky, M.W., Gibson, M.K., Wang, B., Sun, X., Condiotte, Z., Dobrowolski, S., Peterson, D., & Dantas, G. (2019) Adaptive Strategies of the Candidate Probiotic E. coli Nissle in the Mammalian Gut. Cell Host Microbe, 25(4), 499 –512. https://pubmed.ncbi.nlm.nih.gov/30926240/

Cryan, J.F., & Dinan, T.G. (2012). Mind-altering microorganisms: the impact of the gut microbiota on brain and behaviour. Nat Rev Neurosci, 13(10), 701-712. https://pubmed.ncbi.nlm.nih.gov/22968153/

Da Silva, S., Robbe‐Masselot, C., Ait‐Belgnaoui, A., Mancuso, A., Mercade‐Loubiere, M., Salvador‐Cartier, C., ... Mercier‐Bonin, M. (2014). Stress disrupts intestinal mucus barrier in rats via mucin O‐glycosylation shift: Prevention by a probiotic treatment. American Journal of Physiology. Gastrointestinal and Liver Physiology, 307(4), G420–429. https://pubmed.ncbi.nlm.nih.gov/24970779/

Da Silva, S., Robbe‐Masselot, C., Raymond, A., Mercade‐Loubière, M., Salvador‐Cartier, C., Ringot, B., ... Mercier‐Bonin, M. (2015). Spatial localization and binding of the probiotic Lactobacillus farciminis to the rat intestinal mucosa: Influence of chronic stress. PLoS ONE, 10(9), e0136048. https://pubmed.ncbi.nlm.nih.gov/26367538/

De Vadder, F., Kovatcheva-Datchary, P., Goncalves, D., Vinera, J., Zitoun, C., Duchampt, A., Bäckhed, F., & Mithieux, G. (2013). Microbiota-generated metabolites promote metabolic benefits via gut-brain neural circuits. Cell, 156(1-2), 84 –96. https://pubmed.ncbi.nlm.nih.gov/24412651/

Desbonnet, L., Garrett, L., Clarke, G., Bienenstock, J., & Dinan, T.G. (2008). The probiotic Bifidobacteria infantis: An assessment of potential antidepressant properties in the rat. J Psychiatr Res, 43(2), 164-74. https://pubmed.ncbi.nlm.nih.gov/18456279/

Desbonnet, L., Garrett, L., Clarke, G., Kiely, B., Cryan, J.F., & Dinan, T.G. (2010). Effects of the probiotic Bifidobacterium infantis in the maternal separation model of depression. Neuroscience, 170(4), 1179–1188. https://pubmed.ncbi.nlm.nih.gov/20696216/

Diaz Heijtz, R., Wang, S., Anuar, F., Qian, Y., Björkholm, B., Samuelsson, A., Hibberd, M.L., Forssberg, H., & Pettersson, S. (2011). Normal gut microbiota modulates brain development and behavior. Proc Natl Acad Sci USA, 108(7), 3047-3052. https://pubmed.ncbi.nlm.nih.gov/21282636/

Dowlati, Y. (2010) A meta-analysis of cytokines in major depression. Biol Psychiatr, 67(5), 446–457. https://pubmed.ncbi.nlm.nih.gov/20015486/

Egeland. M., Zunszain, P.A., & Pariante, C.M. (2015). Molecular mechanisms in the regulation of adult neurogenesis during stress. Nat Rev Neurosci, 16(4), 189-200. https://pubmed.ncbi.nlm.nih.gov/25790864/

Fijan S. (2014). Microorganisms with claimed probiotic properties: an overview of recent literature. Int J Environ Res Public Health, 11(5), 4745-4767. https://pubmed.ncbi.nlm.nih.gov/24859749/

Foster, J.A., & McVey Neufeld, K.A. (2013). Gut-brain axis: how the microbiome influences anxiety and depression. Trends Neurosci, 36(5), 305-312. https://pubmed.ncbi.nlm.nih.gov/23384445/

Furness, J.B. (2012). The enteric nervous system and neurogastroenterology. Nat. Rev. Gastroenterol. Hepatol., 9(5), 286-294. https://pubmed.ncbi.nlm.nih.gov/22392290/

Gareau, M. G., Jury, J., MacQueen, G., Sherman, P. M., & Perdue, M. H. (2007). Probiotic treatment of rat pups normalises corticosterone release and ameliorates colonic dysfunction induced by maternal separation. Gut, 56(11), 1522–1528. https://pubmed.ncbi.nlm.nih.gov/17339238/

Gill, S. R., Pop, M., Deboy, R.T., Eckburg, P.B., Turnbaugh, P.J., Samuel, B.S., Gordon, J.I., Relman, D.A., Fraser-Liggett, C.M., &Nelson, K.E. (2006). Metagenomic analysis of the human distal gut microbiome. Science, 312(5778), 1355–1359 (2006). https://pubmed.ncbi.nlm.nih.gov/16741115/

Hamilton, J.P., Etkin, A., Furman, D.J., Lemus, M.G., Johnson, R.F., & Gotlib, I.H. (2012). Functional neuroimaging of major depressive disorder: a meta-analysis and new integration of baseline activation and neural response data. Am J Psychiatry, 169(7), 693-703. https://pubmed.ncbi.nlm.nih.gov/22535198/

Inagaki, H., Suzuki, T., Nomoto, K., & Yoshikai, Y. (1996). Increased susceptibility to primary infection with Listeria monocytogenes in germfree mice may be due to lack of accumulation of L‐selectin+ CD44+ T cells in sites of inflammation. Infection and Immunity, 64(8), 3280–3287. https://pubmed.ncbi.nlm.nih.gov/8757865/

Jaggar, M., Rea, K., Spichak, S., Dinan, T.G., & Cryan, J.F. (2020). You've got male: Sex and the microbiota-gut-brain axis across the lifespan. Front Neuroendocrinol, 56, 100815. https://pubmed.ncbi.nlm.nih.gov/31805290/

Jiang, H., Ling, Z., Zhang, Y., Mao, H. Ma, Z., Yinv Y., Wang, W., Tang, W., Tan, Z., Shi, J., Li, L., & Ruan, B. (2015). Altered fecal microbiota composition in patients with major depressive disorder. Brain Behav Immun, 48,

-94. https://pubmed.ncbi.nlm.nih.gov/25882912/

Kato‐Kataoka, A., Nishida, K., Takada, M., Kawai, M., Kikuchi‐Hayakawa, H., Suda, K., ... Rokutan, K. (2016). Fermented milk containing Lactobacillus casei strain Shirota preserves the diversity of the gut microbiota and relieves abdominal dysfunction in healthy medical students exposed to academic stress. Applied and Environment Microbiology, 82(12), 3649–3658. https://pubmed.ncbi.nlm.nih.gov/27208120/

Kelly J.R., Kennedy, P.J., Cryan, J.F., Dinan, T.G., Clarke, G., & Hyland, N.P. (2015). Breaking down the barriers: the gut microbiome, intestinal permeability and stress-related psychiatric disorders. Front Cell Neurosci, 9, 392. https://pubmed.ncbi.nlm.nih.gov/26528128/

Kelly, J.R., Borre, Y., O' Brien, C., Patterson, E., El Aidy, S., Deane, J., Kennedy, P.J., Beers, S., Scott, K., Moloney, G., Hoban, A.E., Scott, L., Fitzgerald, P., Ross, P., Stanton, C., Clarke, G., Cryan, J.F., & Dinan, T.G. (2016). Transferring the blues: Depression-associated gut microbiota induces neurobehavioural changes in the rat. J Psychiatr Res, 82, 109-18. https://pubmed.ncbi.nlm.nih.gov/27491067/

Krishnan, V. & Nestler, E.J. (2008). The molecular neurobiology of depression. Nature, 455(7215), 894-902. https://pubmed.ncbi.nlm.nih.gov/18923511/

Kunze, W.A. Mao, Y.K., Wang, B., Huizinga, J.D., Ma, X., Forsythe, P., & Bienenstock, J. (2009). Lactobacillus reuteri enhances excitability of colonic AH neurons by inhibiting calcium dependent potassium channel opening. J Cell Mol Med, 13(8B), 2261–2270. https://pubmed.ncbi.nlm.nih.gov/19210574/

Le Poul, E., Loison, C., Struyf, S., Springael, J.Y., Lannoy, V., Decobecq, M.E., Brezillon, S., Dupriez, V., Vassart, G., Van Damme, J., Parmentier, M., &Detheux, M. (2003) Functional characterization of human receptors for short chain fatty acids and their role in polymorphonuclear cell activation. J Biol Chem, 278(28), 25481-25489. https://pubmed.ncbi.nlm.nih.gov/12711604/

Li, N., Wang, Q., Wang, Y., Sun, A., Lin, Y., Jin, Y., & Li, X. (2019). Fecal microbiota transplantation from chronic unpredictable mild stress mice donors affects anxiety-like and depression-like behavior in recipient mice via the gut microbiota-inflammation-brain axis. Stress, 22(5), 592-602. https://pubmed.ncbi.nlm.nih.gov/31124390/

Macfarlane, G.T., & Macfarlane, S. (2012). Bacteria, colonic fermentation, and gastrointestinal health. J AOAC Int, 95(1), 50 – 60. https://pubmed.ncbi.nlm.nih.gov/22468341/

Mazmanian, S. K., Liu, C. H., Tzianabos, A. O., & Kasper, D. L. (2005). An immunomodulatory molecule of symbiotic bacteria directs maturation of the host immune system. Cell, 122(1), 107–118. https://pubmed.ncbi.nlm.nih.gov/16009137/

McVey Neufeld, K.A., Mao, Y.K., Bienenstock, J., Foster, J.A., & Kunze, W.A. (2013). The microbiome is essential for normal gut intrinsic primary afferent neuron excitability in the mouse. Neurogastroenterol Motil, 25(2), 183-e88. https://pubmed.ncbi.nlm.nih.gov/23181420/

Miller, A. H., Maletic, V., & Raison, C. L. (2009). Inflammation and its discontents: the role of cytokines in the pathophysiology of major depression. Biol Psychiatry, 65(9), 732-741. https://pubmed.ncbi.nlm.nih.gov/19150053/

Molendijk, M.L., Spinhoven, P., Polak, M, Bus, B.A.A., Penninx, B.W.J.H., & Elzinga, B.M. (2014). Serum BDNF concentrations as peripheral manifestations of depression: evidence from a systematic review and meta-analyses on 179 associations (N=9484). Mol Psychiatry, 19(7), 791-800. https://pubmed.ncbi.nlm.nih.gov/23958957/

Mussell, M., Kroenke, K., Spitzer, R.L., Williams, J.B.W., Herzog, W., & Löwe, B. (2008). Gastrointestinal symptoms in primary care: prevalence and association with depression and anxiety. J Psychosom Res, 64(6), 605–612. https://pubmed.ncbi.nlm.nih.gov/18501261/

Nelson, J.C. & Davis, J.M. (1997). DST studies in psychotic depression: a meta-analysis. Am J Psychiatry, 154(11), 1497-1503. https://pubmed.ncbi.nlm.nih.gov/9356556/

Neufeld, K.A., Kang, N., Bienenstock, J., & Foster, J.A. (2011). Effects of intestinal microbiota on anxiety-like behavior. Commun Integr Biol, 4(4), 492–494. https://pubmed.ncbi.nlm.nih.gov/21966581/

Ostman, S., Rask, C., Wold, A. E., Hultkrantz, S., & Telemo, E. (2006). Impaired regulatory T cell function in germ‐free mice. Europ J of Immunol, 36(9), 2336–2346. https://pubmed.ncbi.nlm.nih.gov/16897813/

Pierre, K., & Pellerin, L. (2005). Monocarboxylate transporters in the central nervous system: distribution, regulation and function. J Neurochem, 94(1), 1–14. https://pubmed.ncbi.nlm.nih.gov/15953344/

Sierra, A., Gottfried-Blackmore, A., Milner, T.A., McEwen, B.S., & Bulloch, K. (2008). Steroid hormone receptor expression and function in microglia. Glia, 56(6), 659–674. https://pubmed.ncbi.nlm.nih.gov/18286612/

Steenbergen, L., Sellaro, R., van Hemert, S., Bosch, J.A., & Colzato, L.S. (2015). A randomized controlled trial to test the effect of multispecies probiotics on cognitive reactivity to sad mood. Brain Behav Immun, 48, 258-264. https://pubmed.ncbi.nlm.nih.gov/25862297/

Strandwitz, P. (2018). Neurotransmitter modulation by the gut microbiota. Brain Res, 1693(B), 128-133. https://pubmed.ncbi.nlm.nih.gov/29903615/

Sudo, N., Chida, Y., Aiba, Y., Sonoda, J., Oyama, N., Yu, X.N., Kubo, C., & Koga, Y. (2004). Postnatal microbial colonization programs the hypothalamic-pituitary-adrenal system for stress response in mice. J Physiol, 558(1), 263–275. https://pubmed.ncbi.nlm.nih.gov/15133062/

Thion, M.S., Ginhoux, F., & Garel, S. (2018). Microglia and early brain development: An intimate journey. Science, 362(6411), 185–189. https://pubmed.ncbi.nlm.nih.gov/30309946/

Tillisch, K., Labus, J., Kilpatrick, L., Jiang, Z., Stains, J., Ebrat, B., Guyonnet, D., Legrain-Raspaud, S., Trotin, B., Naliboff, B., & Mayer, E.A. (2013). Consumption of fermented milk product with probiotic modulates brain activity. Gastroenterology, 144(7), 1394-1401. https://pubmed.ncbi.nlm.nih.gov/23474283/

Valles-Colomer, M., Falony, G., Darzi, Y., Tigchelaar, E.F., Wang, J., Tito, R.Y., Schiweck, C., Kurilshikov, A., Joossens, M., Wijmenga, C., Claes S., Van Oudenhove, L., Zhernakova, A., Vieira-Silva, S., & Raes, J. (2019). The neuroactive potential of the human gut microbiota in quality of life and depression. Nat Microbiol, 4(4), 623-632. https://pubmed.ncbi.nlm.nih.gov/30718848/

Van de Wouw, M., Boehme, M., Lyte, J.M., Wiley, N., Strain, C., O’Sullivan, O., Clarke, G., Stanton, C., Dinan, T.G., & Cryan, J.F. (2018). Short-chain fatty acids: microbial metabolites that alleviate stress-induced brain-gut axis alterations. J Physiol, 596(20), 4923– 4944. https://pubmed.ncbi.nlm.nih.gov/30066368/

Walker, E., McGee, R.E., & Druss, B.G. (2015). Mortality in mental disorders and global disease burden implications: a systematic review and meta-analysis. J Am Med Assoc Psychiatry, 72(4), 334–341. https://pubmed.ncbi.nlm.nih.gov/25671328/

Whitehead, W.E., Palsson, O., & Jones, K.R. (2002). Systematic review of the comorbidity of irritable bowel syndrome with other disorders: what are the causes and implications? Gastroenterology, 122(4), 1140-1156. https://pubmed.ncbi.nlm.nih.gov/11910364/

Winter, G., Hart, R.A., Charlesworth, R.P.G. & Sharpley, C.F. (2018). Gut microbiome and depression: what we know and what we need to know. Rev Neurosci, 29(6):629-643. https://pubmed.ncbi.nlm.nih.gov/29397391/

Wohleb, E.S., McKim, D.B., Sheridan, J.F., & Godbout, J.P. (2014). Monocyte trafficking to the brain with stress and inflammation: a novel axis of immune-to-brain communication that influences mood and behavior. Front Neurosci, 8, 447. https://pubmed.ncbi.nlm.nih.gov/25653581/

Zeng, J., Li, Y. Q., Zuo, X. L., Zhen, Y. B., Yang, J., & Liu, C. H. (2008). Clinical trial: Effect of active lactic acid bacteria on mucosal barrier function in patients with diarrhoea predominant irritable bowel syndrome. Alimentary Pharmacology & Therapeutics, 28(8), 994–1002. https://pubmed.ncbi.nlm.nih.gov/18671775/

Zheng, P., Zeng, B., Zhou, C., Liu, M., Fang, Z., Xu, X., Zeng, L., Chen, J., Fan, S., Du, X., Zhang X., Yang D., Yang Y., Meng H., Li W., Melgiri N.D., Licinio J., Wei H., & Xie P. (2016). Gut microbiome remodeling induces depressive-like behaviors through a pathway mediated by the host’s metabolism. Mol Psychiatry, 21(6), 786–796. https://pubmed.ncbi.nlm.nih.gov/27067014/

Published

07-01-2021

How to Cite

Chen, E., & Clark, R. E. . (2021). The Microbiota-Gut-Brain Axis: A New Direction in Research on Depression. Journal of Student Research, 10(2). https://doi.org/10.47611/jsrhs.v10i2.1504

Issue

Section

HS Review Articles