Combating Algae Blooms
Analyzing the Viability of Cecropin A for Anti-Bloom Applications
DOI:
https://doi.org/10.47611/jsrhs.v10i2.1464Keywords:
Biology, Microbiology, Harmful algae blooms, HABs, Cyanobacteria, Microcystis aeruginosa, Cecropin A, E. coliAbstract
Microcystis aeruginosa is a common freshwater cyanobacterium that can form toxic algal blooms that harm other species and the environment. This project studied the effects of the antimicrobial peptide Cecropin A on the growth of M. aeruginosa to assess Cecropin A’s effectiveness as a tool to combat algal blooms and limit their environmental impacts. In this study, different concentrations of Cecropin A were tested on M. aeruginosa, the growth of which was then measured using a plate count. Each concentration of Cecropin A tested resulted in a significant decrease in M. aeruginosa growth compared to the control group, indicating the effectiveness of this peptide at inhibiting M. aeruginosa. Because Cecropin A is a peptide, bacteria can be genetically engineered to produce it for anti-algal applications. This study also analyzed the effects of Cecropin A on the non-pathogenic E. coli K12 in order to study development of antibiotic resistance in this bacterium and determine its feasibility for anti-algal applications such as producing or distributing Cecropin A. The effects of Cecropin A were tested on successive generations to determine if this strain of bacterium can build up a resistance to Cecropin A that would make it a suitable candidate to produce large quantities of this peptide. The results over three 24-hour periods of exposure to Cecropin A seem to indicate a development of resistance to Cecropin A by E. coli K12, suggesting that this bacterium may be suitable for production and/or distribution of Cecropin A for anti-bloom control efforts.
Downloads
References or Bibliography
Berdalet, E., Fleming, L., Gowen, R., Davidson, K., Hess, P., Backer, L., Moore, S. K., Hoagland, P., Enevoldsen, H. (2016). Marine harmful algal blooms, human health and wellbeing: Challenges and opportunities in the 21st century. Journal of the Marine Biological Association of the United Kingdom, 96(1), 61-91. doi:10.1017/S0025315415001733
Brown, K. L., Hancock, R. E. (2006). Cationic host defense (antimicrobial) peptides. Current Opinion in Immunology, 18(1), 24-30. doi: 10.1016/j.coi.2005.11.004
Epand, R. M., Vogel, H. J. (1999). Diversity of antimicrobial peptides and their mechanisms of action. Biochimica et Biophysica Acta (BBA)-Biomembranes, 1462(1-2), 11-28. doi: 10.1016/s0005-2736(99)00198-4
Fiek, A., Hurwitz, I., Kang, A., Durvasula, R. (2010). Trypanosoma cruzi: Synergistic cytotoxicity of multiple amphipathic anti-microbial peptides to T. cruzi and potential bacterial hosts. Experimental Parasitology, 125(4), 342–347. doi: 10.1016/j.exppara.2010.02.016
Giacometti, A., Cirioni, O., Kamysz, W., D’Amato, G., Silvestri, C., Del Prete, MS., Łukasiak, J., Scalise, G. (2003). Comparative activities of cecropin A, melittin, and cecropin A–melittin peptide CA(1–7)M(2–9)NH2 against multidrug-resistant nosocomial isolates of Acinetobacter baumannii. Peptides, 24(9) 1315-1318. doi: 10.1016/j.peptides.2003.08.003.
Hoagland, P., Scatasta, S. (2006). The Economic Effects of Harmful Algal Blooms. In: Granéli E., Turner J.T. (eds) Ecology of Harmful Algae. Ecological Studies (Analysis and Synthesis), vol 189. Springer, Berlin, Heidelberg. doi: 10.1007/BF02804908
Jeong, H., Yim, J. H., Lee, C., Choi, S. H., Park, Y. K., Yoon, S. H., Hur, C. G., Kang, H. Y., Kim, D., Kee, H. H., Park, K. H., Park, S. H., Park, H. S., Lee, H. K., Oh, T. K., Kim, J. F. (2005). Genomic blueprint of Hahella chejuensis, a marine microbe producing an algicidal agent. Nucleic Acids Research, 33(22), 7066-7073. doi: 1093/nar/gki1016
Kim, D., Kim, J. F., Yim, J. H., Kwon, S. K., Lee, C. H., Lee, H. K. (2008). Red to red - the marine bacterium Hahella chejuensis and its product prodigiosin for mitigation of harmful algal blooms. Journal of Microbiology and Biotechnology, 18(10), 1621-1629. doi: 10.4014/jmb.2008.18.10.1621
Miller, T. R., Beversdorf, L. J., Weirich, C. A., Barlett, S. L. (2017). Cyanobacterial Toxins of the Laurentian Great Lakes, Their Toxicological Effects, and Numerical Limits in Drinking Water. Marine Drugs, 15(6), 1-51. doi: 10.3390/md15060160.
Ni, L., Acharya, K., Hao, X., Li, S. (2012). Isolation and identification of an anti-algal compound from Artemisia annua and mechanisms of inhibitory effect on algae. Chemosphere, 88(9), 1051-1057. doi: 10.1016/j.chemosphere.2012.05.009
Paerl, H. W., Fulton, R. S. 3rd, Moisander, P. H., Dyble, J. (2001). Harmful freshwater algal blooms, with an emphasis on cyanobacteria. Scientific World Journal, 1, 76-113. doi: 10.1100/tsw.2001.16
Rastogi R. P., Madamwar D., Incharoensakdi A. (2015). Bloom Dynamics of Cyanobacteria and Their Toxins: Environmental Health Impacts and Mitigation Strategies. Frontiers in Microbiology 6:1254. doi: 10.3389/fmicb.2015.01254
Sanseverino, I., Conduto, D., Pozzoli, L., Dobricic, S., Lettieri, T. (2016). Algal bloom and its economic impact. European Commission, Joint Research Centre Institute for Environment and Sustainability. doi: 10.2788/660478
Silvestro, L., Weiser, J. N., Axelsen, P. H. (2000). Antibacterial and Antimembrane Activities of Cecropin A in Escherichia coli. Antimicrobial Agents and Chemotherapy, 44(3), 602-607. doi: 10.1128/aac.44.3.602-607.2000
Zerrifi, S. E. A., El Khalloufi, F., Oudra, B., Vasconcelos, V. (2018). Marine harmful algal blooms, human health and wellbeing: challenges and opportunities in the 21st century. Marine Drugs, 16(2), 1-62. doi: 10.3390/md16020055
Published
How to Cite
Issue
Section
Copyright (c) 2021 Ethan Talley; Whitney Holden
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Copyright holder(s) granted JSR a perpetual, non-exclusive license to distriute & display this article.