A Link Between Components of the Nasal Microbiome and an Individual’s Susceptibility to Influenza.
DOI:
https://doi.org/10.47611/jsrhs.v10i2.1455Keywords:
Microbiology, Influenza, nasal microbiome, Staphylococcus, Streptococcus, Haemophilus, Micrococcus, influenza susceptibilityAbstract
According to CDC influenza estimates, the flu infects ~40 million people and causes 24,000 to 60,000 deaths in the United States annually. Vaccination can be highly effective but is often a neglected tool for preventing infection. In this project, three methods were developed to compare an individual’s reported self-history of influenza infection to the types and amounts of nasal bacteria collected by nasal swab to assess if certain bacteria may correlate with less history of influenza infection. These three methods quantified species from four genera of bacteria - Staphylococcus, Micrococcus, Streptococcus and Haemophilus - and compared the amounts of each type of bacteria with participant survey answers regarding their history of influenza infection. In Method 1, a disk diffusion test with bacitracin distinguished isolates of Staphylococcus from Micrococcus. Higher ratios of Staphylococcus to Micrococcus were found in individuals less susceptible to influenza (p = 0.003). In Method 2, S. pyogenes and S. pneumoniae were distinguished based on their hemolytic patterns. A higher proportion S. pneumoniae significantly correlated with more history of influenza (p = 0.002). In Method 3, total numbers of Staphylococcus spp. and H. influenzae were compared. More frequent H. influenzae significantly correlated with higher influenza frequency (p = 0.006). While all three methods indicate correlations between specific nasal bacteria and influenza susceptibility, Method 2 was the simplest and least expensive to perform. Commercialization of one or more of these methods could result in a simple and inexpensive test to identify at-risk individuals for influenza.
Downloads
References or Bibliography
Agrawal, A., & Murphy, T. F. (2011). Haemophilus influenzae infections in the H. influenzae type b conjugate vaccine era. Journal of Clinical Microbiology, 49(11), 3728–3732. https://doi.org/10.1128/JCM.05476-11
Baker, J. S., Hackett, M. F., & Simard, D. J. (1986). Variations in bacitracin susceptibility observed in Staphylococcus and Micrococcus species. Journal of Clinical Microbiology, 23(5), 963–964. https://doi.org/10.1128/JCM.23.5.963-964.1986
Becker, K., Skov, R., & Von Eiff, C. (2015). Staphylococcus, Micrococcus, and Other Catalase-Positive Cocci. In Manual of Clinical Microbiology (11th ed., pp. 354-382). ASM Press. Chapter doi:10.1128/9781555817381.ch21
Büttner, H., Mack, D., & Rohde, H. (2015). Structural basis of Staphylococcus epidermidis biofilm formation: mechanisms and molecular interactions. Frontiers in Cellular and Infection Microbiology, 5, 14. https://doi.org/10.3389/fcimb.2015.00014
Chen, H. W., Liu, P. F., Liu, Y. T., Kuo, S., Zhang, X. Q., Schooley, R. T., Rohde, H., Gallo, R. L., & Huang, C. M. (2016). Nasal commensal Staphylococcus epidermidis counteracts influenza virus. Scientific Reports, 6, 27870. https://doi.org/10.1038/srep27870
Cole, A. M., Dewan, P., & Ganz, T. (1999). Innate antimicrobial activity of nasal secretions. Infection and Immunity, 67(7), 3267–3275. https://doi.org/10.1128/IAI.67.7.3267-3275.1999
Day, R. L., Harper, A. J., Woods, R. M., Davies, O. G., & Heaney, L. M. (2019). Probiotics: current landscape and future horizons. Future Science OA, 5(4), FSO391. https://doi.org/10.4155/fsoa-2019-0004
Falk, D., & Guering, S. J. (1983). Differentiation of Staphylococcus and Micrococcus spp. with the Taxo A bacitracin disk. Journal of Clinical Microbiology, 18(3), 719–721. https://doi.org/10.1128/JCM.18.3.719-721.1983
Haemophilus influenzae. (2018). Retrieved from https://www.cdc.gov/hi-disease/index.html
Johnson, B. A., Anker, H., & Meleney, F. L. (1945). Bacitracin: A New Antibiotic Produced by a Member of the B. subtilis Group. Science (New York, N.Y.), 102(2650), 376–377. https://doi.org/10.1126/science.102.2650.376
Linnes, J. C., Ma, H., & Bryers, J. D. (2013). Giant extracellular matrix binding protein expression in Staphylococcus epidermidis is regulated by biofilm formation and osmotic pressure. Current Microbiology, 66(6), 627–633. https://doi.org/10.1007/s00284-013-0316-7
Liu, M., Zhao, X., Hua, S., Du, X., Peng, Y., Li, X., Lan, Y., Wang, D., Wu, A., Shu, Y., & Jiang, T. (2015). Antigenic Patterns and Evolution of the Human Influenza A (H1N1) Virus. Scientific Reports, 5, 14171. https://doi.org/10.1038/srep14171
Marks, L. R., Mashburn-Warren, L., Federle, M. J., & Hakansson, A. P. (2014). Streptococcus pyogenes biofilm growth in vitro and in vivo and its role in colonization, virulence, and genetic exchange. The Journal of Infectious Diseases, 210(1), 25–34. https://doi.org/10.1093/infdis/jiu058
Namvar, A. E., Bastarahang, S., Abbasi, N., Ghehi, G. S., Farhadbakhtiarian, S., Arezi, P., Hosseini, M., Baravati, S. Z., Jokar, Z., & Chermahin, S. G. (2014). Clinical characteristics of Staphylococcus epidermidis: a systematic review. GMS Hygiene and Infection Control, 9(3), Doc23. https://doi.org/10.3205/dgkh000243
Otto M. (2009). Staphylococcus epidermidis--the 'accidental' pathogen. Nature Reviews Microbiology, 7(8), 555–567. https://doi.org/10.1038/nrmicro2182
Paharik, A. E., & Horswill, A. R. (2016). The Staphylococcal Biofilm: Adhesins, Regulation, and Host Response. Microbiology Spectrum, 4(2), 10.1128/microbiolspec.VMBF-0022-2015. https://doi.org/10.1128/microbiolspec.VMBF-0022-2015
Pan, H., Cui, B., Huang, Y. et al. (2016). Nasal carriage of common bacterial pathogens among healthy kindergarten children in Chaoshan region, southern China: a cross-sectional study. BMC Pediatrics 16(161) https://doi.org/10.1186/s12887-016-0703-x
Patterson MJ. (1996) Streptococcus. In: Baron S, editor. Medical Microbiology. 4th edition. Galveston (TX): University of Texas Medical Branch at Galveston; Chapter 13. Available from: https://www.ncbi.nlm.nih.gov/books/NBK7611/
Popova, M., Molimard, P., Courau, S., Crociani, J., Dufour, C., Le Vacon, F., & Carton, T. (2012). Beneficial effects of probiotics in upper respiratory tract infections and their mechanical actions to antagonize pathogens. Journal of Applied Microbiology, 113(6), 1305–1318. https://doi.org/10.1111/j.1365-2672.2012.05394.x
Rabin, N., Zheng, Y., Opoku-Temeng, C., Du, Y., Bonsu, E., & Sintim, H. O. (2015). Biofilm formation mechanisms and targets for developing antibiofilm agents. Future Medicinal Chemistry, 7(4), 493–512. https://doi.org/10.4155/fmc.15.6
Reich, N. G., Brooks, L. C., Fox, S. J., Kandula, S., McGowan, C. J., Moore, E., Osthus, D., Ray, E. L., Tushar, A., Yamana, T. K., Biggerstaff, M., Johansson, M. A., Rosenfeld, R., & Shaman, J. (2019). A collaborative multiyear, multimodel assessment of seasonal influenza forecasting in the United States. Proceedings of the National Academy of Sciences of the United States of America, 116(8), 3146–3154. https://doi.org/10.1073/pnas.1812594116
Rynda-Apple, A., Robinson, K. M., & Alcorn, J. F. (2015). Influenza and Bacterial Superinfection: Illuminating the Immunologic Mechanisms of Disease. Infection and Immunity, 83(10), 3764–3770. https://doi.org/10.1128/IAI.00298-15
Warnke, P., Frickmann, H., Ottl, P., & Podbielski, A. (2014). Nasal screening for MRSA: different swabs--different results!. PloS One, 9(10), e111627. https://doi.org/10.1371/journal.pone.0111627
Wilkins, T., & Sequoia, J. (2017). Probiotics for Gastrointestinal Conditions: A Summary of the Evidence. American Family Physician, 96(3), 170–178. https://www.aafp.org/afp/2017/0801/p170.html?utm_medium=email&utm_source=transaction
Zeng, W., Shen, J., Bo, T., Peng, L., Xu, H., Nasser, M. I., Zhuang, Q., & Zhao, M. (2019). Cutting Edge: Probiotics and Fecal Microbiota Transplantation in Immunomodulation. Journal of Immunology Research, 2019, 1603758. https://doi.org/10.1155/2019/1603758
Published
How to Cite
Issue
Section
Copyright (c) 2021 Alexx P. Weaver, Sophia McLain; Whitney M. Holden, Ph.D
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Copyright holder(s) granted JSR a perpetual, non-exclusive license to distriute & display this article.