Systematic optimization of Long Short-Term Memory model for predicting NYSE Arca Airline Index (XAL) during COVID-19
DOI:
https://doi.org/10.47611/jsrhs.v10i1.1297Keywords:
Deep Learning, Long Short-Term Memory, Stock MarketAbstract
Predicting stock prices has been both challenging and controversial. Since it first spread through the United States, the COVID-19 pandemic has impacted the stock market in a multitude of ways. Thus, stock price prediction has become even more challenging. Recurrent neural networks (RNN) have been widely used in many fields to predict financial time series. In this study, Long Short-Term Memory (LSTM), a special form of RNN, is used to predict the stock market direction for the US airline industry by using NYSE Arca Airline Index (XAL). The LSTM model was optimized through changing different hyperparameters of the model architecture to find the best combination for increased accuracy and performance evaluated by several metrics, including raw RMSE (3.51) and MAPA (4.6%), and very high MAPA (95.4%) and R^2 (0.978).
Downloads
Published
How to Cite
Issue
Section
Copyright (c) 2021 Sarah Dong; Amber Wang
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Copyright holder(s) granted JSR a perpetual, non-exclusive license to distriute & display this article.