Classification of Coronavirus (COVID-19) Treatments and Drugs Based on Mechanism of Action, Efficacy, and Safety
DOI:
https://doi.org/10.47611/jsrhs.v9i2.1096Keywords:
Coronavirus, COVID-19, Antiviral, Vaccine, PandemicAbstract
The recently discovered coronavirus SARS-CoV-2 has forced countries into lockdown, people into quarantines, and economies to a standstill. Currently there are no FDA approved treatments for COVID-19, the disease caused by this new coronavirus strain. With over 2.8 million cases in the US as of July 3 and a death rate of approximately 5.9%, an effective treatment is urgently needed (Center for Disease Control [CDC], 2020). To date there are few comprehensive reviews of therapeutic options for COVID-19. Here we present the general types and mechanisms of action for drugs currently available or in rapid development. This paper highlights FDA approved drugs that can be repurposed and therefore used immediately to test for coronavirus efficacy as well as novel drugs and vaccines specifically targeted to COVID-19 vulnerabilities.
Downloads
References or Bibliography
REFERENCES
Amanat, F., & Krammer, F. (2020). SARS-CoV-2 Vaccines: Status Report. Immunity, 52(4), 583–589. https://doi.org/10.1016/j.immuni.2020.03.007
Bahl, K., Senn, J. J., Yuzhakov, O., Bulychev, A., Brito, L. A., Hassett, K. J., Laska, M. E., Smith, M., Almarsson, Ö., Thompson, J., Ribeiro, A. M., Watson, M., Zaks, T., & Ciaramella, G. (2017). Preclinical and Clinical Demonstration of Immunogenicity by mRNA Vaccines against H10N8 and H7N9 Influenza Viruses. Molecular therapy : the journal of the American Society of Gene Therapy, 25(6), 1316–1327. https://doi.org/10.1016/j.ymthe.2017.03.035
Cases in the U.S. (2020, May 7). Retrieved May 30, 2020, from https://www.cdc.gov/coronavirus/2019-ncov/cases-updates/cases-in-us.html
Carlucci, P., Ahuja, T., Petrilli, C. M., Rajagopalan, H., Jones, S., & Rahimian, J. (2020). Hydroxychloroquine and azithromycin plus zinc vs hydroxychloroquine and azithromycin alone: outcomes in hospitalized COVID-19 patients. https://doi.org/10.1101/2020.05.02.20080036
Casadevall, A., & Pirofski, L.-A. (2020). The convalescent sera option for containing COVID-19. Journal of Clinical Investigation, 130(4), 1545–1548. https://doi.org/10.1172/jci138003
Center for Disease Control. (2020, July 3). COVIDView: A weekly surveillance summary of U.S. COVID-19 activity. https://www.cdc.gov/coronavirus/2019-ncov/covid-data/covidview/index.html
Cheng, Y., Wong, R., Soo, Y. O. Y., Wong, W. S., Lee, C. K., Ng, M. H. L., … Cheng, G. (2004). Use of convalescent plasma therapy in SARS patients in Hong Kong. European Journal of Clinical Microbiology & Infectious Diseases, 24(1), 44–46. https://doi.org/10.1007/s10096-004-1271-9
Cui, J., Li, F., & Shi, Z. (2018). Origin and evolution of pathogenic coronaviruses. Nature Reviews Microbiology, 17(3), 181-192. Https://doi.org/10.1038/s41579-018-0118-9
Cunningham, A. (2020, April 8). Can plasma from recovered COVID-19 patients treat the sick? Retrieved May 30, 2020, from https://www.sciencenews.org/article/coronavirus-covid-19-can-plasma-recovered-patients-treat-sick
Devaux, C. A., Rolain, J. M., Colson, P., & Raoult, D. (2020). New insights on the antiviral effects of chloroquine against coronavirus: what to expect for COVID-19?. International journal of antimicrobial agents, 55(5), 105938. https://doi.org/10.1016/j.ijantimicag.2020.105938
Duan, K., Liu, B., Li, C., Zhang, H., Yu, T., Qu, J., … Yang, X. (2020, April 28). Effectiveness of convalescent plasma therapy in severe COVID-19 patients. Retrieved May 30, 2020, from https://www.pnas.org/content/117/17/9490
Fehr, A. R., & Perlman, S. (2015). Coronaviruses: an overview of their replication and pathogenesis. Methods in molecular biology (Clifton, N.J.), 1282, 1–23. https://doi.org/10.1007/978-1-4939-2438-7_1
Food and Drug Administration. (2020, May 1). Recommendations for Investigational COVID-19 Convalescent Plasma. https://www.fda.gov/vaccines-blood-biologics/investigational-new-drug-ind-or-device-exemption-ide-process-cber/recommendations-investigational-covid-19-convalescent-plasma
Food and Drug Administration. (2020, June 15). Coronavirus (COVID-19) Update: FDA revokes emergency use authorization for chloroquine and hydroxychloroquine. https://www.fda.gov/news-events/press-announcements/coronavirus-covid-19-update-fda-revokes-emergency-use-authorization-chloroquine-and
Gandhi, M., Yokoe, D. S., & Havlir, D. V. (2020). Asymptomatic Transmission, the Achilles’ Heel of Current Strategies to Control Covid-19. New England Journal of Medicine, 382(22), 2158–2160. https://doi.org/10.1056/nejme2009758
Harrison C. (2020). Coronavirus puts drug repurposing on the fast track. Nature biotechnology, 38(4), 379–381. https://doi.org/10.1038/d41587-020-00003-1
Jean, S. S., Lee, P. I., & Hsueh, P. R. (2020). Treatment options for COVID-19: The reality and challenges. Journal of microbiology, immunology, and infection = Wei mian yu gan ran za zhi, 53(3), 436–443. https://doi.org/10.1016/j.jmii.2020.03.034
Ko, W.-C., Rolain, J.-M., Lee, N.-Y., Chen, P.-L., Huang, C.-T., Lee, P.-I., & Hsueh, P.-R. (2020). Arguments in favour of remdesivir for treating SARS-CoV-2 infections. International Journal of Antimicrobial Agents, 55(4), 105933. https://doi.org/10.1016/j.ijantimicag.2020.105933
Kupferschmidt, K. (2020). These drugs don’t target the coronavirus, they target us. Science. https://doi.org/10.1126/science.abc0405
Little P. (2020). Non-steroidal anti-inflammatory drugs and covid-19. BMJ (Clinical research ed.), 368, m1185. https://doi.org/10.1136/bmj.m1185
Lurie, N., Saville, M., Hatchett, R., & Halton, J. (2020). Developing Covid-19 Vaccines at Pandemic Speed. New England Journal of Medicine, 382(21), 1969–1973. https://doi.org10.1056/nejmp2005630
Magden, J., Kääriäinen, L., & Ahola, T. (2004). Inhibitors of virus replication: Recent developments and prospects. Applied Microbiology and Biotechnology, 66(6), 612-621. https://doi.org/10.1007/s00253-004-1783-3
Management of Patients with Confirmed 2019-nCoV. (2020, May 20). Retrieved May 30, 2020, from https://www.cdc.gov/coronavirus/2019-ncov/hcp/clinical-guidance-management-patients.html
Ou, X., Liu, Y., Lei, X., Li, P., Mi, D., Ren, L., … Qian, Z. (2020). Characterization of spike glycoprotein of SARS-CoV-2 on virus entry and its immune cross-reactivity with SARS-CoV. Nature Communications, 11(1). https://doi.org/10.1038/s41467-020-15562-9
Padula W. V. (2020). Why Only Test Symptomatic Patients? Consider Random Screening for COVID-19. Applied health economics and health policy, 18(3), 333–334. https://doi.org/10.1007/s40258-020-00579-4
Pardi, N., Hogan, M. J., Pelc, R. S., Muramatsu, H., Andersen, H., DeMaso, C. R., Dowd, K. A., Sutherland, L. L., Scearce, R. M., Parks, R., Wagner, W., Granados, A., Greenhouse, J., Walker, M., Willis, E., Yu, J. S., McGee, C. E., Sempowski, G. D., Mui, B. L., Tam, Y. K., … Weissman, D. (2017). Zika virus protection by a single low-dose nucleoside-modified mRNA vaccination. Nature, 543(7644), 248–251. https://doi.org/10.1038/nature21428
Pardi, N., Hogan, M. J., Porter, F. W., & Weissman, D. (2018). mRNA vaccines — a new era in vaccinology. Nature Reviews Drug Discovery, 17(4), 261–279. https://doi.org10.1038/nrd.2017.243
Punt, J., Stranford, S. A., Jones, P. P., Owen, J., & Kuby, J. (2019). Immunology. New York, NY: Macmillan Education.
Richner, J. M., Himansu, S., Dowd, K. A., Butler, S. L., Salazar, V., Fox, J. M., Julander, J. G., Tang, W. W., Shresta, S., Pierson, T. C., Ciaramella, G., & Diamond, M. S. (2017). Modified mRNA Vaccines Protect against Zika Virus Infection. Cell, 168(6), 1114–1125.e10. https://doi.org/10.1016/j.cell.2017.02.017
Sanders, J. M., Monogue, M. L., Jodlowski, T. Z., & Cutrell, J. B. (2020). Pharmacologic Treatments for Coronavirus Disease 2019 (COVID-19). Jama. https://doi.org/10.1001/jama.2020.6019
Slomski, A. (2020). No Benefit for Lopinavir–Ritonavir in Severe COVID-19. Jama, 323(20), 1999. https://doi.org/10.1001/jama.2020.6793
Spencer, G. (2020, April 8). A promising COVID-19 treatment gets fast-tracked. Retrieved May 30, 2020, from https://hub.jhu.edu/2020/04/08/arturo-casadevall-blood-sera-profile/
Stadler, K., Masignani, V., Eickmann, M., Becker, S., Abrignani, S., Klenk, H. D., & Rappuoli, R. (2003). SARS--beginning to understand a new virus. Nature reviews. Microbiology, 1(3), 209–218. https://doi.org/10.1038/nrmicro775
Subbarao, K., McAuliffe, J., Vogel, L., Fahle, G., Fischer, S., Tatti, K., Packard, M., Shieh, W. J., Zaki, S., & Murphy, B. (2004). Prior infection and passive transfer of neutralizing antibody prevent replication of severe acute respiratory syndrome coronavirus in the respiratory tract of mice. Journal of virology, 78(7), 3572–3577. https://doi.org/10.1128/jvi.78.7.3572-3577.2004
Verch, T., Trausch, J. J., & Shank-Retzlaff, M. (2018). Principles of vaccine potency assays. Bioanalysis, 10(3), 163–180. https://doi.org10.4155/bio-2017-0176
Versteeg, L., Almutairi, M. M., Hotez, P. J., & Pollet, J. (2019). Enlisting the mRNA Vaccine Platform to Combat Parasitic Infections. Vaccines, 7(4), 122. https://doi.org/10.3390/vaccines7040122
Wang, M., Cao, R., Zhang, L., Yang, X., Liu, J., Xu, M., … Xiao, G. (2020). Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. Cell Research, 30(3), 269–271. https://doi.org/10.1038/s41422-020-0282-0
Wit, E. D., Feldmann, F., Cronin, J., Jordan, R., Okumura, A., Thomas, T., … Feldmann, H. (2020). Prophylactic and therapeutic remdesivir (GS-5734) treatment in the rhesus macaque model of MERS-CoV infection. Proceedings of the National Academy of Sciences, 117(12), 6771–6776. https://doi.org/10.1073/pnas.1922083117
Wu, F., Zhao, S., Yu, B., Chen, Y., Wang, W., Song, Z., . . . Zhang, Y. (2020, February 03). A new coronavirus associated with human respiratory disease in China. Retrieved June 18, 2020, from https://www.nature.com/articles/s41586-020-2008-3
Yan, Y., Shin, W. I., Pang, Y. X., Meng, Y., Lai, J., You, C., Zhao, H., Lester, E., Wu, T., & Pang, C. H. (2020). The First 75 Days of Novel Coronavirus (SARS-CoV-2) Outbreak: Recent Advances, Prevention, and Treatment. International journal of environmental research and public health, 17(7), 2323. https://doi.org/10.3390/ijerph17072323
Zheng, J. (2020). SARS-CoV-2: an Emerging Coronavirus that Causes a Global Threat. International Journal of Biological Sciences, 16(10), 1678–1685. https://doi.org/10.7150/ijbs.45053
Zhou, P., Yang, X. L., Wang, X. G., Hu, B., Zhang, L., Zhang, W., Si, H. R., Zhu, Y., Li, B., Huang, C. L., Chen, H. D., Chen, J., Luo, Y., Guo, H., Jiang, R. D., Liu, M. Q., Chen, Y., Shen, X. R., Wang, X., Zheng, X. S., … Shi, Z. L. (2020). A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature, 579(7798), 270–273. https://doi.org/10.1038/s41586-020-2012-7
Zumla, A., Chan, J. F. W., Azhar, E. I., Hui, D. S. C., & Yuen, K.-Y. (2016). Coronaviruses — drug discovery and therapeutic options. Nature Reviews Drug Discovery, 15(5), 327–347. https://doi.org/10.1038/nrd.2015.37
Published
How to Cite
Issue
Section
Copyright (c) 2020 Mahi Ravi, William Jackson
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Copyright holder(s) granted JSR a perpetual, non-exclusive license to distriute & display this article.