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ABSTRACT 
 
Black ice is a perilous phenomenon resulting from frozen precipitation on road surfaces. It stands as one of the 
most prominent contributors to winter traffic accidents since it is nearly invisible. Given these characteristics, 
there is a pressing need to develop automotive systems capable of detecting black ice to improve driving safety 
and conditions. This study proposes the deployment of two YOLOX-based models to implement real-time black 
ice detection from drone-view images. The proposed approach leverages YOLOX-Tiny, known for its profi-
ciency in real-time object detection, in conjunction with YOLOX-B which is a refined version designed specif-
ically for detecting black ice on roadways. For training and evaluating the proposed system, we collected a 
dataset of black ice consisting of 2,851 sample images sized at 416x416 pixels. Significantly, YOLOX-Tiny 
achieved an AP@[0.5:0.95] of 0.4923, whereas YOLOX-B achieved 0.4779. Additionally, we demonstrate a 
practical implementation of the proposed method by deploying the system on the Nvidia Jetson Orin Nano 
device for real-time inference. The black ice dataset we compiled is publicly available on GitHub. We expect 
that the proposed black ice detection system will contribute to effectively maintaining safer driving conditions. 
 

Introduction 
 
Black ice is a transparent and nearly invisible thin layer of ice that forms on road surfaces, particularly during 
cold weather conditions. It's called "black" because it often blends in with the pavement which makes it difficult 
for drivers to see. Black ice typically forms when the air temperature is at or below freezing, causing any mois-
ture on the road, such as melted snow or rainwater, to freeze rapidly. 

Black ice stands as a main factor contributing to winter traffic accidents, often forming during the 
morning when the road surface is sufficiently damp and chilled. In the United States alone, black ice is respon-
sible for over 1,300 fatalities and 116,800 injuries annually (FHWA 2023). Research indicates that the fatality 
rate for accidents involving black ice is 1.6 times higher than under normal road conditions, underscoring the 
grave dangers associated with this phenomenon. Accurate detection of black ice is necessary in reducing the 
number of accidents it causes. 
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Figure 1. Comparison of Fatality Rates Depending on Road Conditions 
 

The traditional approach for detecting black ice has several disadvantages, due to its time-consuming 
and labor-intensive nature. Typically, this method involves manual inspections of road surfaces by personnel, 
which requires significant time and effort. Each inspection involves physically examining the roadways, often 
during adverse weather conditions, increasing the risk to personnel safety. Moreover, the process is highly 
reliant on human observation, which can be prone to errors and inconsistencies. Additionally, the need for 
constant monitoring and manual intervention makes it challenging to cover large areas efficiently, leading to 
potential delays in identifying and addressing black ice hazards. Overall, the traditional approach's reliance on 
manual labor makes it inefficient and resource-intensive which highlights the need for more automated and 
streamlined methods for detecting black ice. 

Recently, several machine learning-based studies have introduced methods for automated black ice 
detection. Lee et al. introduced a black ice detection system based on convolutional neural networks (Lee et al. 
2020). Kim et al. developed an object detection system for identifying black ice using infrared cameras (Kim 
et al. 2021). Li et al. showcased a lightweight convolutional neural network architecture tailored for detecting 
black ice, specifically designed for Infrared Road environments (Li et al 2021). Zhang et al. proposed a hybrid 
approach that leverages thermal and RGB images to achieve precise black ice detection (Zhang et al. 2022). 

However, previous research utilized antiquated models, making real-time detection on edge devices 
difficult. Even models reported to have been developed and tested are not reproducible due to the lack of de-
scription of the models. In some cases, overfitting is suspected due to the small size of the dataset used in the 
studies. Some used Google Image Search to collect image data, which is less reliable. Some paid attention to 
the noise caused when a car passes on black ice for the task. Others analyze the decrease in the spinning of the 
wheels when passing through black ice. However, a severe limitation exists in these methods: a vehicle must 
go over black ice to detect it. Thermal cameras have a significant limitation in that they are costly. In some 
cases, outdated models with longer inference times have been chosen. For studies using YOLO, the cutting-
edge object detection model, overfitting may have occurred due to small dataset sizes. 
 
Table 1. Comparison of Previous Research 
 

Researcher Image Type Data Collection 
Method 

Dataset Size Model Accuracy 
(Evaluation 

Metrics) 
Lee et al. Digital Google Image Search 11000 CNN 0.95 (Accuracy) 
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Kim et al. Infrared Spray water on 
asphalt pieces 

900 YOLOv4 0.735 (Recall) 

Li et al. Digital Spray water on 
asphalt pieces 

536 1) MobileNetV2 
2) Custom 
machine 

learning model 

1) 0.97 
(Accuracy) 

2) 0.99 
(Accuracy) 

Zhang et al. Thermal Attached a camera to 
the roof of the vehicle 
and captured the road 

surface 

4244 CNN 0.94 (Precision) 

 
However, these methods are inefficient because they fail to account for the irregular nature of black 

ice formation on road surfaces which makes them unsuitable for real-world scenarios. To address this issue, we 
propose a large scale black ice dataset and the practical implementation of a system for real-time inference. We 
have collected a large-scale collection of black ice image samples to encompass various geometric patterns and 
distributions of black ice. Additionally, we have investigated data augmentation techniques to enhance the util-
ity of the dataset. Furthermore, we have introduced a practical implementation of the proposed system on an 
embedded device for real-time inference. The proposed method achieved an AP@[0.5:0.95] of 0.4923 which 
demonstrates state-of-the-art performance. 
 
 
 

Proposed System 
 

 

(a) 

 

(b) 

 
Figure 2. Flowchart of the proposed system. (a): System overview and (b): Implementation details 

 
The proposed system consists of two modules: the drone-view image capturing module and the machine learn-
ing-based black ice detection module (Figure 2). The drone-view image capturing module acquires input images 
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using the camera equipped on the drone, which are then transmitted to the embedded device for black ice de-
tection inference. 

In this chapter, we provide detailed explanations of these two modules. The chapter is structured as 
follows: Chapter 2.1 elaborates on the drone-view image capturing module, while Chapter 2.2 delves into the 
machine learning-based black ice detection module. Finally, Chapter 2.3 will discuss dataset collection and its 
statistical analysis. 
 
Drone-View Image Capturing Module 
 

 
 
Figure 3. DJI Tello (Bhujbal and Barahate 2022) 
 
This study used DJI's Tello, a drone that is easy to program and convenient for shooting and transmitting images 
and videos. Its built-in camera can record HD (720p) video in 30 FPS and take 5MP (2592x1936) photos with 
a field of view (FOV) of 82.6°. The drone measures 98x92.5x41 mm and weighs about 80 grams. The captured 
image is transferred to the black ice detection module via bluetooth communication. The detailed process of 
black ice detection will be explained in Chapter 2. 

 
 
Figure 4. An example black ice image captured using DJI Tello 
 
Black Ice Detection Module 
 
Machine Learning-Based Detection 
YOLO (Ge et al. 2021) is the most representative one-stage detector that performs feature extraction and object 
classification simultaneously. It is known for its fast processing speed and aptness for real-time use. 
YOLOX is based on the spatial pyramid pooling layer of YOLOv3 and connects feature pyramid network for 
prediction. Its feature channel is reduced to 256 using a 1x1 convolutional layer. Both classification and regres-
sion are performed using two branches of two 3x3 convolutional layers. 

YOLOX provides anchor-free object detection. It is suitable for detecting black ice since it varies in 
size and shape. CSPDarknet53 is the backbone for YOLOX. This enables more stable learning based on gradient 
flow than the previous backbone, Darknet53. Newly introduced YOLO-based models have limitations in terms 
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of black ice detection. YOLOv7 is anchor-based, and YOLOv8 is not sufficiently validated due to a lack of 
published papers. We concluded YOLOX to be the most suitable for the task since it is easy to modify due to 
the abundance of past works, such as object detection in low light conditions and aerial images (Wang et al. 
2023). 

Among YOLOX variants, this research used YOLOX-Tiny for its small model size, which allows the 
model to be run on Orin in a stable manner. The backbone structure of YOLOX is downsized for YOLOX-
Tiny. Based on 416x416 input resolution, the total number of parameters is 5.06M, and GFlops marks 6.45. 
The number of layers in Darknet is changed, and the number of head channels is reduced to 96. 

This research proposes YOLOX-B, a novel model based on YOLOX-Tiny, with improved speed and 
minimal accuracy loss. The CSP layers in the backbone network are decreased to one, and the number of 
YOLOX head channels is also reduced to 64. 
 

 
 
Figure 5. YOLOX Model Architecture (Ge et al. 2021) 
 
Table 2. Overview of Model Training 
 
 YOLOX-Tiny YOLOX-B 

Train Dataset D1: 413 
D2: 814 
D3: 1,137 

Epoch 300 

Batch Size 32 16 

Learning Rate 0.001 

Learning Rate Scheduler yoloxwarmcos 

Decay Rate 0.0005 

Early Stopping (Y/N) Y 

Resolution of Input Images 416x416 

 
Nvidia Jetson Orin Nano Developer Kit 
This study adopted NVIDIA's Orin Nano Developer Kit (Orin) to analyze the camera footage from Tello. The 
kit is built around the NVIDIA Orin system-on-chip (SoC), which is a high-performance computing platform 
specifically designed for autonomous machines, such as robots, drones, and autonomous vehicles. The installed 
packages and versions of Orin used to run YOLOX are shown in Table 3.  
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Figure 6. NVIDIA Orin Nano Dev. Kit (Orin) (Archet et al. 2023) 
 
Table 3. Orin Environment 
 

Type Name 
CPU ARMv8 Processor rev 1 (v8l) 
GPU NVIDIA GA10B 

Memory 8Gb 
OS Ubuntu 20.04.6 LTS 

Pytorch Version 2.0.0+nv23.05 
TensorRT Version 5.1.2 
OpenCV Version 4.8.0 with CUDA 

 
Large Scale Black Ice Dataset 
 
Due to the lack of publicly available black ice image datasets collected on drones, we built our own dataset for 
this research. The equipment used to construct the dataset is shown in Table 4. Outdoor images were taken with 
Tello. 
 
Table 4. Camera Equipment 
 

Name Manufacturer Location 
iPhone SE2 Apple California, US 
iPhone SE3 Apple California, US 
iPhone 12 Apple California, US 

iPhone 14 Pro Apple California, US 
Q9 LG Electronics Seoul, South Korea 
V30 LG Electronics Seoul, South Korea 
Tello DJI Shenzhen, China 

 
The custom datasets were built in three ways, as shown in Table 5. The pictures in the D1 and the D2 

datasets were taken indoors. The existence of quality indoor datasets demonstrates the possibility of creating 
reliable datasets for black ice detection even in seasons other than winter. It also contributes to future works on 
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black ice detection by building datasets in a controlled laboratory environment, an economical alternative to 
taking images outside in winter. 
 

  

 

(a) (b) (c) 

Figure 7. Sample image for each dataset. (a): D1 dataset, (b): D2 dataset, and (c): D3 dataset 

D1 Dataset 
Each asphalt piece was frozen to temperatures between -4°C and -20 °C. Black ice was then created by spraying 
the surface with 4°C tap water and waiting 30 seconds. The water was sprayed on one side of a line that bisects 
the asphalt piece, leaving a 1 mm thick layer of water on one side. The experimental setup is shown in Figure 
8. One camera was placed 1 meter above the asphalt piece, and the other two were placed 1 meter above and 
0.50 meters to the left and right. Photos of black ice were taken at 1-minute intervals for 5 minutes, resulting in 
18 images for each asphalt piece. The D1 dataset is likely to enhance our model accuracy, for it best reflects 
the optical properties of black ice, such as light reflection.  
 

 
 
Figure 8. Experimental Setup Design for Obtaining D1 Dataset 
 
D2 Dataset 
Each asphalt piece was frozen to temperatures between  4°C and -20°C. Then, 4°C tap water was sprayed at 
various parts of the piece to form a 1 mm thick sheet of black ice.  As shown in Figure 9, the asphalt felt paper 
attached to a 1.2 m x 1.2 m MDF wood board was used as a background for our dataset to resemble the road 
surface. Two to five among twenty of the asphalt pieces were randomly selected and placed on the board to 
depict the arbitrariness of black ice. Videos were taken from a distance of 0.2 to 1.5 meters at an angle of 10° 
to 90°, similar to drone settings. 

The D2 dataset provides a good representation of the environment of black ice on road surfaces since 
it considers the irregularity of real-world black ice in terms of number, size, and placement. 
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Figure 9. Asphalt Felt Board 
 
D3 Dataset 
1mm thick black ice was created by spraying 4°C tap water on the road in CheongShim International Academy 
with a surface temperature between 0°C to -6°C. Videos were taken with Tello from 0 AM to 6 AM. The drone 
was kept parallel and 1 meter above the ground, and videos were recorded from different directions. The D3 
dataset is expected to benefit our model accuracy as it provides drone imagery that is highly similar to real-
world conditions. 

As this study aims for highly accurate black ice detection in drones, we included only the D3 dataset 
in the Test and Validation sets. The D3 dataset was divided into Train, Validation, and Test sets in the ratio of 
7:2:1. The number of images per dataset is shown in Table 5. 
 
Table 5. Number of Train, Validation, and Test Data per Dataset 
 

Dataset Train Validation Test 
D1 413 0 0 
D2 814 0 0 
D3 1,137 325 162 

 
Data augmentation was used during training to prevent overfitting and improve model accuracy. Sam-

ple images with mixup, mosaic, HSV (Hue, Saturation, and Value), or all three augmentations are shown in 
Figure 10. 

Mosaic and mixup augmentation were used to befit the model for a wider array of background condi-
tions. HSV augmentation was used to train the model for a broader range of lighting conditions.  During train-
ing, data augmentation was randomly applied to the images at each iteration, and only for the last 15 epochs 
was the model trained without data augmentation to stabilize its training.  
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(a) (b) (c) (d) 

Figure 10. Images After Data Augmentation. (a): Mixup, (b): Mosaic, (c): HSV, and (d): All 

 
The distribution of annotation locations can be represented as three heatmaps as shown in figure 11. 

The D1 dataset, collected with a strict experimental setting, has the annotations focused at the center. The D2 
dataset shows the broadest distribution of objects, indicating that it fully illustrates the random nature of black 
ice formation. The D3 dataset shows a concentration of its annotations in the bottom half of the images as it 
was collected from droneview.  
 

   

(a) (b) (c) 

Figure 11. Dataset Annotation Heatmap. (a): D1 dataset, (b): D2 dataset, and (c): D3 dataset 

 

Experimental Results 
 
Accuracy 
 
Since black ice detection is highly similar to object-detection tasks for medical purposes in terms of research 
method and purpose, we assessed both models with sensitivity. YOLOX-Tiny has a higher AP@[0.5:0.95]. 
Although the accuracy of YOLOX-B is relatively low, it demonstrates superiority in its higher 27 FPS, com-
pared to the 24 FPS of YOLOX-Tiny. 
 
 
 
 
Table 6. Model Training Results 
 

Model AP@[0.5:0.95] Sensitivity FPS 
YOLOX-Tiny 0.4923 97.2 24 

YOLOX-B 0.4779 96.3 27 
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The precision-recall graphs for each model on our test dataset are as shown in Figuure 12. The graphs 
show a clear trade-off between precision and recall. The models have achieved high AP numbers, over 0.47, 
compared to previously trained computer vision models, yet show little signs of overfitting from their precision-
recall curves. This ensures their stable performance in further applications as well.  
 

  

(a) (b) 

Figure 12. Precision-Recall Graph. (a): YOLOX-Tiny and (b): YOLOX-B 

 
Hyperparameter Control  
 
Learning Rate 
As shown in Table 7, both YOLOX-Tiny and YOLOX-B demonstrated the highest accuracy at a learning rate 
0.001. Thus, our team trained the model at a 0.001 learning rate. 
 
Table 7. Variation in Model Performance According to Learning Rate 
 

Model Base Learning Rate AP@[0.5:0.95] Epoch 
YOLOX-Tiny 0.01 0.5789 200 

0.001 0.5883 
0.0001 0.5779 

0.00001 0.4923 
YOLOX-B 0.01 0.5560 

0.001 0.5761 
0.0001 0.5743 

0.00001 0.0833 
 
Batch Size 
As shown in Table 8, YOLOX-Tiny showed higher accuracy at batch size 32. YOLOX-B performed best at 
batch size 16. Thus, our team trained the model at 32 batch size for YOLOX-Tiny and 16 batch size for 
YOLOX-B. 
 
Table 8. Variation in Model Performance According to Batch Size 
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Model Batch AP@[0.5:0.95] Epoch 
YOLOX-Tiny 16 0.603 200 

32 0.6428 
YOLOX-B 16 0.5762 

32 0.5548 
 
Epoch 
As shown in [Fig 7] and [Fig 8], the losses of models converged at 250~260 epochs. Thus, our team trained the 
model for 300 epochs. 
 

 
 

(a) (b) 

Figure 13. Convergence of Training Loss. (a): YOLOX-Tiny and (b): YOLOX-Tiny 

 
Resolution  
When the model was trained with resolutions of 416x416 and 640x640, respectively, the number of computa-
tions for training increased significantly at the higher resolutions. However, there were minor improvements in 
model accuracy as the resolution increased. We observed that higher resolutions resulted in only a slight im-
provement in model accuracy, despite a significant increase in computational load. Therefore, we determined 
the resolution of the input images to be set at 416x416. 
 
Table 9. Gflops for Each Input Image Resolution 
 

Model Resolution Gflops AP@[0.5:0.95] 
YOLOX-Tiny 416 6.45 0.6813 

640 15.23 0.6624 
YOLOX-B 416 2.7 0.6378 

640 6.4 0.6195 
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Figure 14. Black Ice Detection Sample Image 
 

Conclusion 
 
This study used YOLOX-Tiny and improved the model to create YOLOX-B to perform real-time black ice 
detection with drones. Custom black ice datasets were built and analyzed. YOLOX-Tiny marked an 
AP@[0.5:0.95] of 0.4923 and an FPS of 24 with Orin. On the other hand, YOLOX-B marked an AP@[0.5:0.95] 
of 0.4779 and an FPS of 27 with the same conditions. Both successfully detected black ice in real time. The 
study enables real-time black ice detection with drones, which has not been actively studied. It can play a crucial 
part in reducing traffic accidents caused by black ice. In addition, we collected and released a black ice dataset 
previously unavailable to the public to support further research. Future works will be conducted to optimize the 
black ice detection model using model architectures and backbones other than YOLOX-Tiny. 
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