
Twitter Sentiment Analysis Using Machine Learning

Srimayi Gupta1 and Padmavathy Jawahar#

1Mountain House High School, USA
#Advisor

ABSTRACT

In an age of social media, online forums, and chats, cyberbullying is a prevalent issue. On Twitter (now X),
approximately 500 million tweets are shared per day (Antonakaki et.al., 2021). It is the job of the moderators
to ensure these tweets follow standard community guidelines. However, the sheer number of tweets makes it
difficult to sort manually and ensure they are following protocol. Sentiment analysis and machine learning
algorithms can be used to classify these texts automatically as positive or negative. Normally, these machine
learning models are much more efficient and may provide higher accuracy rates in identifying hate speech in
Twitter. In this paper, we are exploring the use of five classical machine learning algorithms to classify Twitter
hate speech as neutral, racist, or sexist. Model performance was compared after using raw tweet data versus
pre-processed tweets through data cleanup. Furthermore, we highlight two methods to deal with imbalanced
datasets to improve the prediction rates. Overall, we were able to achieve a 96% accuracy in correctly classify-
ing tweets into the different labels.

Introduction to Sentiment Analysis

Sentiment analysis is a technique that uses natural language processing (NLP) and machine learning algorithms
to categorize text within a dataset as positive, negative, or neutral as per its content (Giachanou et.al., 2016).
Sentiment analysis is typically used to sort through customer invoices, product reviews, and social media com-
ments. By doing this analysis, we are able to determine the opinions of people and use these opinions for a
variety of purposes. For example, businesses may look into the sentiment of product reviews to identify ways
their product can improve. Since these data sets are very large, using a machine learning (ML) model to conduct
a sentiment analysis guarantees a more efficient way compared to sorting through text-based data by hand. One
question arises: what methods in sentiment analysis must be used to ensure the best prediction rates? When
categorizing speech connotation as positive and negative, we desire the most precise results. Numerous factors
impact these prediction rates such as the type of prediction model used or the amount of data sampled from a
larger population.

For the purpose of this project, we are narrowing our focus to Twitter sentiment analysis where we use
natural language processing and machine learning algorithms to categorize the emotional intent of tweets. Per-
forming an analysis on these tweets can identify the prevalence of cyberbullying on social media platforms and
creates a stepping stone for a targeted approach in preventing types of hate speech (sexism, racism, etc.). This
additionally makes the platform's ability in reporting tweets easier. Since we are in an age of technology de-
pendence, cyberbullying is inevitable but we can use sentiment analysis to minimize its impact as much as
possible by censoring hate speech on these platforms.

Introduction to Machine Learning

Volume 13 Issue 2 (2024)

ISSN: 2167-1907 www.JSR.org/hs 1

Machine learning assists a computer to learn through data driven algorithms. These algorithms can be trained
with input data and its classification. Data values are separated into a train test split where a percentage of the
data goes towards training the machine learning model and the remaining serves as an accuracy test to see how
well the model learned the dataset.

Depending on the rationale, there are different types of machine learning models that can learn from
input data and output generalized classifications. For Twitter sentiment analysis, we are using classical machine
learning algorithms like Logistic Regression, KNeighbors, Naïve Bayes, and Random Forest for classification
of data. As we are using labels to categorize the tweets and train the models, we are using supervised learning.
Each model may vary in prediction accuracy, so it is up to the user to select the optimal model based on their
criteria.

Classification Algorithms Used for Twitter Sentiment Analysis

The following classical models were used to perform the Twitter Sentiment Analysis.

Logistic Regression
Logistic regression is a linear algorithm for binary classification. However, there are techniques to extend lo-
gistic regression to classify more than two classes. The generated prediction values in logistic regression is
between 0 and 1. In the twitter hate speech dataset, a logistic regression model will predict the likelihood of the
tweet being neutral, sexist, or racist. Based on relationships between independent data sets, logistic regression
will make well-versed predictions for categorical dependent variables (we are measuring the likelihood that a
tweet is categorized into neutral, sexist, or racist). Logistic regression can be imported from sklearn library with
the command below:
 >>> from sklearn.linear_model import LogisticRegression

KNeighbors
The Neighbors Algorithm is a model used for the classification and regression of data with labels. Given a set
of training tweets that are predefined as neutral, sexist and racist, the KNeighbors algorithm compares new
metrics to existing trained data to determine its category. For example, assume that the model draws a tweet
called tweet #1. The Neighbors algorithm will measure tweet #1 relative to the nearest neighbors (categorization
of tweets) to assign tweet #1 a score and determine its category. KNeighbors can be imported from sklearn
library with the command below:

>>> from sklearn.neighbors import KNeighborsClassifier

Naïve Bayes
Classification done through Naive Bayes models are probabilistic predictions that are useful in real-world ap-
plications. This machine learning algorithm is most commonly used for face recognition, article classification,
and spam filtration. We use the concept of conditional probability to understand the function of Naive Bayes
models. Based on the data sample used to train the model, the Naive Bayes algorithm calculates the probability
of each label (neutral, sexist, or racist) and uses a test tweet to calculate the conditional probability of each tweet
class. Complement Naïve Bayes is best used for imbalanced data sets. Balanced sets use Multinomial Naïve
Bayes. Naïve Bayes algorithms can be imported from sklearn library with the command below:

>>> from sklearn.naive_bayes import MultinomialNB
>>> from sklearn.naive_bayes import ComplementNB

Random Forest

Volume 13 Issue 2 (2024)

ISSN: 2167-1907 www.JSR.org/hs 2

Most preferred for imbalanced data sets (unequal tweet numbers in each category) is the Random Forest algo-
rithm. Random Forest is an ensemble learning method that utilizes multiple decision trees. The algorithm makes
a final decision based on the mode of all the individual decision trees. Random Forest can be imported from the
sklearn library with the command below:

>>> from sklearn.ensemble import RandomForestClassifier

Model Prediction Performance Metrics

In ML, algorithm performance is measured using precision, recall, F1 score, and overall accuracy. To measure
the overall performance of a model, both precision and recall need to be analyzed equally.

Precision
Precision measures what fraction of positives were actually correct. False positives are instances that were
classed as positive that were wrong classifications. A model with 0 false positives will have a precision score
of 1.

Precision = True Positive prediction counts
True Positives+False Positives

Recall
Recall measures what proportion of actual positives was identified correctly. Both recall and precision depend
on the classification threshold that was set for the model. Increasing the threshold might increase the precision,
but will reduce the recall as many positive instances will drop below the threshold and will be classed as false
negatives.

Recall = True Positive prediction counts
True Positives+False Negatives

F1 Score
A F1 score is the harmonic mean of precision and recall. A good F1 score indicates that the model is balanced
between precision and recall. It suggests that the model's overall performance is satisfactory, considering both
false positive and false negative classifications.

Overall Accuracy
Accuracy measures the overall correct predictions made across all classes. It is calculated as the ratio of the
number of correctly classified instances to the total number of instances in the dataset.

Details on Dataset

We retrieved Twitter hate speech data from Kaggle. The “Cyberbullying Dataset,” refer to figure 1, is a collec-
tion of datasets from different social media platforms like Kaggle, Twitter, YouTube, and Wikipedia. For the
purpose of this project, we used “twitter parsed data csv file” and converted it into a pandas data frame. This
set contains 16848 tweets categorized into neutral, sexist, and racist comments. Originally, the type of tweet
was annotated by explicitly stating if the tweet was neutral, sexist, or racist. For the machine learning model to
easily analyze these tweets, the annotations must be converted into integers that will be listed under the column
label_num. Neutral tweets will be denoted as ‘0’, sexist as ‘1’, and racist as ‘2.’ Based on the dataset, the number
of tweets that were classed as neutral was 11501, sexist was 3377, and racist was 1970. By looking at these
numbers, we can conclude that this dataset is imbalanced as the number of neutral tweets are 3 to 5 times more

Volume 13 Issue 2 (2024)

ISSN: 2167-1907 www.JSR.org/hs 3

than the tweets classed as racist and sexist. The imbalanced nature of the sample data will impact the perfor-
mance of the classification models in predicting a tweet as neutral, sexist, or racist.

Figure 1. Twitter Dataset from Kaggle. Source: https://www.kaggle.com/datasets/saurabhshahane/cyberbully-
ing-dataset. The column ‘Text’ is the raw tweets and ‘label_num’ is the numerical conversion of the classes.

Data Cleanup

While the Twitter data may be used in its raw form, it may not provide the best accuracy results in classification.
Therefore, we can use the following data cleanup methods.

Stopwords and Special Characters

Stopwords are filler words such as I, me, they, myself, themselves, etc. that do not add meaning to the context
of the tweet (Nothman et.al., 2018). To reduce the size of the data set and to add relevance to the context of the
tweet, it is recommended to filter out these words. Similarly, the other special characters (#, @) can be filtered
out.

Stemming

Stemming is a natural language processing technique that is used to reduce words to their root forms (Willett,
2006). In other words, it is reducing the word to its base form by removing the affixes (ing, es, ied). For example,
waiting, waited, waits are reduced to the base word wait. The drawbacks of stemming are that it can reduce the
words to base words which sometimes do not have a meaning or context in English. For instance, arguing to
argu, where argu does not have a meaning. The word ‘argu’ does not exist but the stemming process removes
‘ing’ from the word ‘arguing’. We used Porter Stemming (Khyani et.al., 2021) and the code snippet is as shown
below.

>>>import nltk
from nltk.stem import PorterStemmer
word_stemmer = PorterStemmer()
word_stemmer.stem('Changing')
Result: Chang

Lemmatization

Lemmatization uses the context of the words during reduction. Unlike stemming, lemmatization reduces to
meaningful words that exist in the English dictionary. In the previous example where ‘arguing’ was reduced to

Volume 13 Issue 2 (2024)

ISSN: 2167-1907 www.JSR.org/hs 4

https://www.kaggle.com/datasets/saurabhshahane/cyberbullying-dataset
https://www.kaggle.com/datasets/saurabhshahane/cyberbullying-dataset

‘argu’ in stemming, if lemmatization was used, ‘arguing’ will reduce to ‘argue’ Figure 2 shows the effect of
stemming vs lemmatization.

Figure 2. Stemming vs. Lemmatization

The following tweet shows the difference between the raw form, stemming, and lemmatization
Raw Tweet: RT @ahtweet: @freebsdgirl How dare you have feelings is a fantastic way to dehumanize

someone
Stemming: rt ahtweet freebsdgirl dare feel fantast way dehuman someon
Lemmatization: rt ahtweet: freebsdgirl dare feelings fantastic way dehumanize someone

TF-IDF Vectorization

Before going into detail of the model results, it is important to understand TF-IDF vectorization of text or string
data to numerical matrices. TF-IDF stands for term frequency - inverse document frequency and is a technique
used to convert a sentence or corpus into a numerical vector or matrix which can be used as the input feature to
train the model. TF-IDF is used to determine how significant a word is to a sentence or a corpus. It is a weighing
system calculation that assigns a weight to each word in a document based on its term frequency (TF) and the
reciprocal document frequency (IDF). The words with higher weight scores are deemed to be more signifi-
cant. TF-IDF can be imported using the following code:

>>> from sklearn.feature_extraction.text import TfidfVectorizer
Coding Tools and Methodology
Once the raw tweets were preprocessed with stopword filtering and stemming, we used 80% of the

data for the training dataset and remaining 20% as a test data set. The test-train data was defined using the
following module from sklearn:

>>> from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(
 df.Text,
 df.label_num,
 test_size=0.2, # 20% samples will go to test dataset
 random_state=15,
 stratify=df.label_num
)
Where X_train and X_test are the sample tweets and y_train, y_test are the numerical classes assigned

to label neutral, sexist, and racist classes. The ML models will be trained and tested with this data.
Sklearn (Buitinck et.al., 2013) offers various packages and ML tools that can help optimize the code

into a simple flow. We used the pipeline function to process the train test data where TF-IDF vectorization and

Volume 13 Issue 2 (2024)

ISSN: 2167-1907 www.JSR.org/hs 5

any ML model can be passed as input variables. The code below shows a simple algorithm for KNeighbors
classifier. The classification report function was used to derive the performance metrics.

>>> from sklearn.neighbors import KNeighborsClassifier
from sklearn.pipeline import Pipeline
from sklearn.metrics import classification_report
from sklearn.feature_extraction.text import TfidfVectorizer
clf = Pipeline([
 ('vectorizer_tfidf',TfidfVectorizer()),
 ('KNN', KNeighborsClassifier())
])
clf.fit(X_train, y_train)
y_pred = clf.predict(X_test)
print(classification_report(y_test, y_pred))

Results and Discussion

The following outlines the results of the machine learning model classifications for the different techniques
used.

Results for ML Classification for Raw Data

Table 1 shows the results of the ML models for raw tweets classification. Overall accuracy for the best per-
forming model, Logistic Regression, was around 84%. However, the other metrics, like recall, was around 60%,
which implies that the proportion of the overall sexist or racist tweets that were identified correctly was low. In
this case, many of the tweets from sexist or racist classes were wrongly classed as neutral. The overall perfor-
mance of the raw data classification was not satisfactory.
Table 1. Prediction metrics for raw tweets data

Model

Precision Recall F1-Score Accu-
racy

N1 S2 R3 N1 S2 R3 N1 S2 R3

KNeighborsClassi-
fier

0.81 0.81 0.70 0.93 0.52 0.54 0.87 0.63 0.61 0.80

Multinomial N B 0.71 0.95 0.88 0.99 0.16 0.13 0.83 0.27 0.23 0.73

Complement N B 0.85 0.81 0.65 0.89 0.60 0.77 0.87 0.69 0.70 0.82

Random Forest 0.82 0.9 0.82 0.96 0.53 0.58 0.89 0.66 0.68 0.83

Logistic Regression 0.84 0.86 0.79 0.94 0.60 0.65 0.89 0.71 0.71 0.84

Volume 13 Issue 2 (2024)

ISSN: 2167-1907 www.JSR.org/hs 6

N1 is neutral tweets, S2 is Sexist tweets and R3 is Racist tweets. Overall recall scores were low and
shown in bold.

Results for ML Classification after Data Cleanup

Table 2 shows the classification report after cleaning stop words in the data and using stemming. The accuracy
of the classification improved marginally by 1% to 2% for most of the models. Again, the overall performance
of the models was not at par due to a low recall score.

Table 2. Prediction metrics for cleaned data post stop words removal and stemming

Model

Precision Recall F1-Score Accuracy

N1 S2 R3 N1 S2 R3 N1 S2 R3

KNeighborsClassi-
fier

0.81 0.79 0.72 0.93 0.48 0.61 0.87 0.60 0.66 0.80

Multinomial N B 0.74 0.93 0.86 0.99 0.23 0.25 0.84 0.37 0.37 0.75

Complement N B 0.88 0.79 0.61 0.86 0.67 0.86 0.87 0.72 0.71 0.82

Random Forest 0.85 0.86 0.80 0.94 0.62 0.68 0.90 0.72 0.74 0.85

Logistic Regression 0.85 0.87 0.80 0.95 0.61 0.65 0.89 0.72 0.72 0.85

N1 is neutral tweets, S2 is Sexist tweets and R3 is Racist tweets. Overall recall scores were low and

shown in bold.
Dealing with Unbalanced data set

The twitter data set was unbalanced as the total tweet counts for the 3 classes, neutral, sexist, and racist, were
11501, 3377 and 1970 respectively. The racist tweet count was about 6 times lower than the neutral tweet count.
Typically, imbalanced data sets will give a poor accuracy rate for classification. To deal with this imbalanced
data set (Vargas et al., 2022), we used two methods: downsampling and oversampling.

Downsampling
In this method, we randomly down sampled the neutral tweets and the sexist tweets to match the number of
racist tweets. The resulting downsampled data set had an equal number of tweets for each of the classes (1970).
The train test data set was derived using the new set of down-sampled tweets. Table 3, shows the performance
of the classification models with this new down sampled data set. Given the low number of sample tweets for
training, the accuracy of the models decreased. Logistic regression, previously the best model, dropped from
85% to 81%. On a positive note, we can see the recall and F1 scores have improved from previous cases. This
implies that a balanced data set might result in a better prediction across the classes.

Volume 13 Issue 2 (2024)

ISSN: 2167-1907 www.JSR.org/hs 7

Table 3. Prediction metrics for cleaned pre-processed and downsampled data

Model

Precision Recall F1-Score Accuracy

N1 S2 R3 N1 S2 R3 N1 S2 R3

KNeighborsClassi-
fier

0.65 0.79 0.85 0.70 0.71 0.87 0.68 0.75 0.86 0.76

Multinomial N B 0.77 0.79 0.83 0.62 0.82 0.96 0.69 0.80 0.89 0.80

Complement N B 0.84 0.75 0.81 0.53 0.88 0.97 0.65 0.81 0.89 0.79

Random Forest 0.70 0.83 0.90 0.78 0.74 0.90 0.74 0.78 0.90 0.81

Logistic Regression 0.71 0.85 0.90 0.79 0.76 0.89 0.75 0.80 0.89 0.81

N1 is neutral tweets, S2 is Sexist tweets and R3 is Racist tweets. Overall recall scores have improved

and shown in bold.

Oversampling
In the case of oversampling, the sexist and racist tweets were duplicated to match the total number of neutral
tweets. The end result is all classes have the same number of tweets (11501). Now we have a larger pool of
training data set for the racist and sexist comments, same as the neutral tweet counts. The training and test data
set is taken from this new data frame. The performance of the models for the oversampled data set is shown
below in Table 4. In this scenario, all the models had a significant improvement in accuracy and all other met-
rics. The best performing classifiers were Random Forest and Logistic regression.

Table 4. Prediction metrics for cleaned pre-processed and oversampled data

Model

Precision Recall F1-Score Accuracy

N1 S2 R3 N1 S2 R3 N1 S2 R3

KNeighborsClassi-
fier

0.87 0.85 0.87 0.70 0.91 0.97 0.78 0.88 0.92 0.86

Multinomial N B 0.92 0.87 0.86 0.70 0.94 0.99 0.80 0.90 0.92 0.88

Complement N B 0.95 0.85 0.85 0.66 0.96 0.99 0.78 0.90 0.92 0.87

Volume 13 Issue 2 (2024)

ISSN: 2167-1907 www.JSR.org/hs 8

Random Forest 0.98 0.95 0.94 0.89 0.99 1.0 0.94 0.97 0.97 0.96

Logistic Regression 0.92 0.92 0.93 0.85 0.93 0.99 0.88 0.93 0.96 0.92

N1 is neutral tweets, S2 is Sexist tweets and R3 is Racist tweets. Overall, all metrics improved and recall

scores were high, almost touching 100%
The recall improved significantly. For example, recall score of racist tweets in random forest classifier

was 1. This means there was no false negative and 100% of the tweets were classed correctly. The recall was
99% for the sexist tweet class. The F1 scores were in the high 90’s. The models performed significantly better
than the cases we discussed previously. Figure 3 shows the confusion matrix for the best performing Random
Forest classifier where the class numbers (0, 1, 2) are the neutral, sexist, and racist tweet labels. The figure
shows that the classifier predicted majority of the tweet’s classes correctly. The x-axis is the predicted class
number of the test tweets and the y-axis is the true classification from the data set. We can see from the table
that less than 5% of tweets were misclassed and majority of the tweets were predicted correctly.

Figure 3. Random Forest Metrics with Balanced/Oversampled Data Set, Tweet Preprocessing, and Stemming

Figure 4 shows the precision trend for racist tweets for various ML classifiers that we tried. The pre-
cision trend shows with data preprocessing and balancing the data set with over sampling methods improved
the performance across all ML models, except Multinomial NB. Figure 5 show the recall metric trend for racist
tweet class and we observe how balancing the data between the classes strongly improved the recall score. Since
the recall improved after balancing the data, the F1 score (Figure 6) and overall accuracy among all classes
improved as shown in Figure 7.

Volume 13 Issue 2 (2024)

ISSN: 2167-1907 www.JSR.org/hs 9

Figure 4. Precision trend plot for racist tweets across model classifiers and data sets. Balancing the data set
improved the precision.

Figure 5. Recall trend plot for racist tweets across model classifiers and data sets. Balancing the data set im-
proved the Recall dramatically.

Volume 13 Issue 2 (2024)

ISSN: 2167-1907 www.JSR.org/hs 10

Figure 6. F1 score trend plot for racist tweets across model classifiers and data sets. Balancing the data set
improved the precision considerably.

Figure 7. Accuracy trend plot across model classifiers and data sets.

Conclusion

We used sentiment analysis and machine learning algorithms to properly classify Twitter hate speech as neutral,
racist, or sexist. Different techniques such as data clean-up, downsampling, and oversampling were used to
increase the accuracy of the machine learning model’s metrics. An unbalanced dataset held the lowest predic-
tions rates when labeling Twitter hate speech. When this data was balanced, precision scores improved espe-
cially when the data was oversampled. The highest accuracy rate was seen in the Random Forest Classifier with
balanced, oversampled, and preprocessed data. Yielding a 96% accuracy rate, this model proves to be an effi-
cient way to accurately label tweets as neutral, sexist, and racist. This can be applied to a larger picture when
discussing effective methods to sort through tweets to ensure they follow platform guidelines.

In the future, we plan to expand this study further to improve the classification rates of imbalanced
datasets without oversampling. This will be done using recent NLP techniques such as BERT and GPT.

Acknowledgments

Volume 13 Issue 2 (2024)

ISSN: 2167-1907 www.JSR.org/hs 11

I would like to extend thanks to my advisor for guiding me through this project. I also thank JSR for giving me
the opportunity to publish this paper.

I am also grateful to sklearn for machine learning models, Kaggle for providing the twitter dataset, and
Google Cofab for providing a coding environment.

References

Antonakaki, D., Fragopoulou, P., & Ioannidis, S. (2021). A survey of Twitter research: Data model, graph

structure, sentiment analysis and attacks. Expert Systems with Applications, 164, 114006.
https://doi.org/10.1016/j.eswa.2020.114006

Giachanou, A., & Crestani, F. (2016). Like It or Not. ACM Computing Surveys, 49(2), 1–41.

https://doi.org/10.1145/2938640

1.1. Linear Models — scikit-learn 0.22.2 documentation. (n.d.). Scikit-Learn.org. https://scikit-

learn.org/stable/modules/linear_model.html#logistic-regression

1.6. Nearest Neighbors — scikit-learn 0.21.3 documentation. (2019). Scikit-Learn.org. https://scikit-

learn.org/stable/modules/neighbors.html

Scikit-learn. (2019). 1.9. Naive Bayes — scikit-learn 0.21.3 documentation. Scikit-Learn.org. https://scikit-

learn.org/stable/modules/naive_bayes.html

1.11. Ensemble methods. (n.d.). Scikit-Learn. https://scikit-learn.org/stable/modules/ensemble.html#random-

forests

Google Developers. (2019, March 5). Classification: Precision and Recall - Google Developers.

https://developers.google.com/machine-learning/crash-course/classification/precision-and-recall

Nothman, J., Qin, H., & Yurchak, R. (2018). Stop Word Lists in Free Open-source Software Packages.
Proceedings of Workshop for NLP Open Source Software (NLP-OSS).
https://doi.org/10.18653/v1/w18-2502

Willett, P. (2006). The Porter stemming algorithm: then and now. Program, 40(3), 219–223.

https://doi.org/10.1108/00330330610681295

Khyani, Divya & B S, Siddhartha. (2021). An Interpretation of Lemmatization and Stemming in Natural

Language Processing. Shanghai Ligong Daxue Xuebao. Journal of University of Shanghai for
Science and Technology. 22. 350-357.

sklearn.feature_extraction.text.TfidfTransformer — scikit-learn 0.23.1 documentation. (n.d.). Scikit-

Learn.org. https://scikit-
learn.org/stable/modules/generated/sklearn.feature_extraction.text.TfidfTransformer.html

Vargas, V., Aranda, J., Costa, R., Pereira, P., & Luis, J. (2022). Imbalanced data preprocessing techniques for

machine learning: a systematic mapping study. 65(1), 31–57. https://doi.org/10.1007/s10115-022-
01772-8

Volume 13 Issue 2 (2024)

ISSN: 2167-1907 www.JSR.org/hs 12

https://doi.org/10.1016/j.eswa.2020.114006
https://doi.org/10.1145/2938640
https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression
https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression
https://scikit-learn.org/stable/modules/neighbors.html
https://scikit-learn.org/stable/modules/neighbors.html
https://scikit-learn.org/stable/modules/naive_bayes.html
https://scikit-learn.org/stable/modules/naive_bayes.html
https://scikit-learn.org/stable/modules/ensemble.html#random-forests
https://scikit-learn.org/stable/modules/ensemble.html#random-forests
https://developers.google.com/machine-learning/crash-course/classification/precision-and-recall
https://doi.org/10.18653/v1/w18-2502
https://doi.org/10.1108/00330330610681295
https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.TfidfTransformer.html
https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.TfidfTransformer.html
https://doi.org/10.1007/s10115-022-01772-8
https://doi.org/10.1007/s10115-022-01772-8

Buitinck, L., Louppe, G., Blondel, M., Pedregosa, F., Müller, A., Grisel, O., Niculae, V., Prettenhofer, P.,

Gramfort, A., Grobler, J., Layton, R., Vanderplas, J., Joly, A., Holt, B., & Varoquaux, G. (2013).
API design for machine learning software: experiences from the scikit-learn project.

Volume 13 Issue 2 (2024)

ISSN: 2167-1907 www.JSR.org/hs 13

