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ABSTRACT 
 
Music is a beautiful form of expression that is universally understood. In fact, people across all cultural back-
grounds, even those without extensive exposure to musical education, can easily recognize the unique sounds 
of different instruments. This paper explores the use of machine learning to identify various instruments. The 
scope of this project focuses on audio recordings with one instrument playing one pitch, and the specific instru-
ments in this study were viola, piano, and ukulele. This paper analyzes ways to quantify the differences in 
sounds of instruments using the harmonic frequency content apparent in spectrograms. It proposes the use of a 
simple but efficient K-Nearest-Neighbors machine learning algorithm. The results achieved 80% accuracy; us-
ing a larger dataset and using convolutional neural networks could improve accuracy of classification. The 
machine learning algorithm can be applied to the broader world of sound classification, and it can eventually 
surpass a human’s ability at identifying sounds (e.g. telling apart viola from violin, which the average human 
cannot do). There are numerous real-world applications for musical instrument recognition. It can enable auto-
matic sorting and searching of massive musical collections with ease, which could be useful to streaming plat-
forms that provide personalized recommendations to their users.  
 

Introduction 
 
Selected Instruments 
 
This paper focuses on the three instruments that I can play: ukulele, viola, and piano. The ukulele is a member 
of the lute family of instruments and is seen as a miniature guitar-like instrument. The viola is a string instrument 
that is slightly larger than a violin but with a deeper and more resonant sound. As the alto or ‘middle’ voice of 
the string family, its size and pitch is between the violin and the cello. The piano is a keyboard instrument 
typically with 36 black and 52 white keys, each of which produces sound when it is pressed. [1] 
 
Table 1. The instruments selected for this study, along with the pitch of each string or key and the  respective 
frequencies. 
 

Ukulele Viola Piano 
String Frequency String Frequency Key Frequency 

G 392 Hz C 130.4 Hz A 27.50 Hz 
C 262 Hz G 195.6 Hz B 30.50 Hz 
E 330 Hz D 293.3 Hz … … 
A 440 Hz A 440 Hz C 4186.00 Hz 
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Timbre 
 
There are many ways that have been proposed to tell apart musical instruments. Each instrument’s unique tone 
is referred to as its timbre. [2] It comes from the sonic properties and characteristics of each instrument, based 
on how it is constructed and how it produces sound. Words to describe timbre include bright, dark, mellow, and 
warm. More specifically, warm tones are sounds that are soothing and comforting; bright tones are sounds that 
have a vibrant and sparkling quality.  

Unique timbres can distinguish different instruments that are playing the exact same note. The same 
note means the same pitch and same fundamental frequency. But even when the fundamental frequency is the 
same, the harmonic frequency content is not; the vibrations and resonance varies across instruments. This is 
what leads to distinct timbres. 
 
Table 2. Example of words used to describe timbre and instruments that are often described using those words. 
The three instruments used in this study (piano, viola, ukulele) are bolded. 
 

Timbre Instruments 

Brassy Trumpet, Trombone 

Harsh Distorted electric guitar, Loud piano 

Warm Viola, Cello, Saxophone 

Soft Recorder, Quiet piano 

Bright Ukulele, Trumpet, Piccolo, Xylophone 

 
Harmonic Frequencies 
 
The timbre of the instrument can be quantified by its harmonic frequency content. Each instrument produces 
its own unique vibrational or standing wave pattern. These patterns are only created within the instrument at 
specific frequencies, called harmonic frequencies. The harmonic frequencies are multiples of the fundamental 
frequency, also known as the first harmonic frequency. For example, if the pitch A3 is played, it has a funda-
mental frequency of 220 Hz; the harmonics would be 440 Hz, 660 Hz, 880 Hz, and so on.  
 
Table 3. Fundamental frequency (row 1) and harmonic frequencies (other rows) of a note. 
 

Frequency Order Name 1 Name 2 Standing wave representation 

1 × f = 440 Hz n = 1 1st harmonic fundamental tone 
 

2 × f = 880 Hz n = 2 2nd harmonic 1st overtone 
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3 × f = 1320 Hz n = 3 3rd harmonic 2nd overtone 
 

4 × f = 1760 Hz n = 4 4th harmonic 3rd overtone 
 

 
Every single note, when played on an instrument, has all of these different frequencies seamlessly 

overlapping together. For example, if the pitch A4 (440 Hz) was played on a piano, then the listener would 
mainly hear the fundamental frequency A4 (row 1), but also A5 (row 2), A6 (row 3), and higher octaves of a 
C.  

Each instrument has harmonic frequencies that possess its own relative strength, resulting in differing 
harmonic frequency content. It was thus proposed that harmonic frequencies in spectrograms could be used to 
train the model to classify the various instruments. 
 

Methods 
 
Materials 
 
The three instruments to be analyzed are the viola, ukulele, and piano.  

For data collection, the three instruments were recorded playing two sets of pitches. The specific in-
struments used were a Donner Concert Ukulele, 15.5 inch Viola, and a Kawai Upright Piano. The recording 
was done with a RØDE VideoMicro Microphone and the Quicktime Player app. 

The instruments were first tuned with a Korg TM-50 to ensure maximum accuracy and precision for 
pitch. Then, the following pitches were played and recorded on all three instruments.  
 
Table 4. The datasets used in this study and their respective pitches. 
 

Dataset Number of Data Samples Pitches 

Training dataset 8 pitches per instrument C4, D4, E4, F4, G4, A4, B4, C5 

Testing dataset 5 pitches per instrument C4, D4, E4, F4, G4 

 
Two sets of audio recordings will ensure that the model is reliably recognizing all variations of what 

is essentially the same sound, even if there are subtle differences. Each recording was around five seconds long 
and contained the pure sound of the instrument, without any background noise. The MP3 files were converted 
into WAV files before being used for model training. 
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Figure 1. a) The three instruments: viola (left), ukulele (right), and piano (center). b) The RØDE VideoMicro 
Microphone used to record. c) The Korg TM-50 tuner used to ensure a consistently accurate pitch for each 
recording.  
 

First, analysis of spectrogram and waveform graphs for the audio recordings yielded insights to guide 
the development of the model. [3] The model assumed that the differences in harmonic frequencies was a pri-
mary cause of the distinct sounds of each instrument tested. A viola has a warm, ringing sound, with a high 
level of harmonic frequency content. A piano’s sound is round and melodious, so it has a medium amount of 
harmonic frequencies. Plucking a ukulele string produces a short, clear sound, with little to no harmonic fre-
quencies. It was hypothesized that the differences in the instruments’ harmonic frequency content would be 
significant enough to distinguish them from each other. 
 
Spectrogram Frequency Analysis 
 

 
 
Figure 2. Waveform graphs (top) and spectrogram graphs (bottom) show clear differences in the harmonic 
frequencies. a) A viola has a warm, ringing sound, with a high level of harmonic frequency content (a lot more 
green than blue in the spectrogram graphs). b) Plucking a ukulele string produces a short, crisp sound, with little 
to no harmonic frequencies. c) A piano’s sound is round and melodious, and a medium amount of harmonic 
frequencies. 
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Data Pre-Processing  
 
During the computer’s training stage, it split each audio recording into 5 frames and ran a Fast Fourier Trans-
form (FFT) on each frame to convert a signal from its time domain to a representation in the frequency domain. 
[4] The FFT converts a signal from the time-domain to frequency-domain. The FFT divides the signal into its 
frequency components which are single sinusoidal oscillations at distinct frequencies each with their own am-
plitude. 
 

 
 
Figure 3. a) An FFT for an audio recording lasting approximately 5 seconds. The major peak with a high 
amplitude represents the fundamental frequency. b) A zoomed-in version of the same FFT shows a threshold 
line, where everything below it is considered background noise. 
 

First, the computer found the amplitude of the fundamental frequency, the first peak that occurs above 
a certain threshold. There was a minimum threshold that the amplitude had to meet, in order to eliminate quiet 
background noise from being mistaken for the fundamental frequency. This was necessary because there was a 
period of silence of a few seconds before the instrument begins to play. 

Next, the computer marked the amplitude of each harmonic frequency, located at every integer multi-
ple of the fundamental frequency. Then the computer compared the ratio of these harmonic frequency ampli-
tudes to the amplitude of the fundamental frequency. The more harmonic frequency content there was, the 
higher this ratio was, because later harmonic frequencies still had a relatively high amplitude instead of its 
sound quickly fading away. For example, viola had the highest ratio and the most harmonic frequency content, 
leading to a warm resonant sound that lasted multiple seconds longer than the piano and ukulele. 

These results provided insights the features to be extracted for the algorithm. [5] The features extracted 
from each audio recording were the ratios of the amplitudes of the first ten harmonic frequencies relative to that 
of the fundamental frequency for each of five frames. These fifty features per audio recording were used to train 
the K-Nearest Neighbors algorithm. 
 
K-Nearest Neighbors Algorithm 
 
The K-Nearest Neighbors (KNN) algorithm is one of the simplest yet most effective machine learning algo-
rithms. [6] KNN uses supervised learning, meaning it uses labeled training data. In this context, KNN is per-
forming classification, where a class label is predicted based on plurality vote. 
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KNN is based on the idea that similar points can be found near one another, as they have similar labels 
and values. When making predictions, the algorithm calculates the distances between the input data point and 
all the training examples, using the Euclidean distance formula. [7] 

Equation 1: Euclidean distance formula 
 

𝑑𝑑(𝑝𝑝, 𝑞𝑞)  =  ��⬚
𝑛𝑛

𝑖𝑖=1

(𝑞𝑞𝑖𝑖 − 𝑝𝑝𝑖𝑖)2 

 
The algorithm identifies the ‘k’ (where k is an integer) nearest neighbors of an input point based on 

their distances. Ultimately, the algorithm predicts the label based on the most common class label among these 
k neighbors. The KNN algorithm can be considered a voting system because the class label of a new data point 
is predicted based on the k nearest neighbors in the feature space. 
 

 
 
Figure 4. An example of the KNN algorithm trying to classify a new input data point. In this example, k=5 so 
the model seeks out the five closest neighbors in terms of distance. These include instruments from each class, 
making it a slightly tricky problem to solve.  
 
Defining K Value 
The k-value determines the number of neighbors that will be used to determine the classification of a given data 
point. It is important to optimize k for the specific dataset at hand to decrease overfitting or underfitting as much 
as possible. [8] The trade-off is between variance and bias, with low values of k offering low bias but high 
variance, and high values of k offering high bias and low variance. [9] 

The value of k used to classify the instruments was k=5. 
 
Advantages and Disadvantages 
The KNN algorithm offers the advantages of ease of implementation and adaptation. Because KNN only re-
quires a k value and a distance metric as the parameters, it has few hyperparameters compared to other machine 
learning algorithms. Furthermore, it adapts easily because all training data is stored in memory, so when new 
training samples are added, the algorithm adjusts without needing to start over. 

The KNN algorithm also has some drawbacks. Specifically, it does not scale well and requires lots of 
memory and data storage compared to other classifiers. However, the instrument classification problem does 
not have a big enough dataset for this to be an issue. The KNN algorithm also does not perform well with high-
dimensional data inputs, so providing too many features may actually increase the errors. This was controlled 
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for in the instrument classification problem by tweaking the number of features until the optimal number was 
reached. 
 
Model Training 
 
First the model used the training dataset to train using the extracted features, and then tell the model to classify 
instruments. The parameters were fine tuned to optimize accuracy. Any changeable values were tweaked to try 
to push the accuracy up, including numFrame, numFreq, numSample, threshold=max(data)/2. 

Next, the model was trained on the training dataset and tested on the testing dataset. Having a separate 
train and test set ensures the accuracy of the code’s behavior in real world scenarios. The training data is used 
by the algorithm to identify a pattern in the training data, specifically the relationship between features and the 
class label. This identified pattern can be used to make predictions on new, unseen data, which is where the test 
set comes in. The test data is used to evaluate the performance of the model. The accuracy of the model’s 
prediction is determined by comparing the model’s predicted classes to the actual classes. 
 

Results 
 
Training Accuracy 
 
After optimizing parameters (including numFrame, numFreq, numSample), the accuracy for the training dataset 
was 93%. 
 
Testing Accuracy 
 
After training on the data from the training dataset, the KNN model predicted the class of each audio recording 
in the testing dataset. The model predicted 12 out of 15 correctly which resulted in 80% accuracy. 
 

 
 
Figure 5. The console showed the comparison of the computer’s predicted label versus the actual label. (0 - 
Viola; 1 - Ukulele; 2 - Piano) 
 

The confusion matrix is an accuracy metric that represents the prediction summary in matrix form, 
displaying both correctly predicted classes and errors. Each row represents the label of the true class, and each 
column represents the label of the predicted class. The diagonal cells show correctly classified samples, while 
the off-diagonal cells show model errors. 
 
Table 5. The confusion matrix created to visualize the performance of the KNN Model. 
 

  True Label 
  Viola Ukulele Piano 

Predicted Viola 5 0 0 
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Label Ukulele 0 5 0 

Piano 0 3 2 

 
First row: All 5 are correct for viola 
Second row: All 5 are correct for ukulele 
Third row: This is where the computer messed up. It thought that 3 out of the 5 piano recordings were 

ukulele recordings, and only got 2 out of 5 correct. 
 
Principal Component Analysis 
 
Principal component analysis (PCA) is a technique for reducing the dimensionality of datasets with lots of 
information. [10] For example, it can reduce a feature space with hundreds of features into only a few important 
ones. One of PCA’s important features is its ability to increase interpretability but at the same time minimize 
information loss. [11] A PCA graph was generated to better visualize the differences between the three instru-
ments to understand why the computer was making certain classification errors, specifically mixing up ukulele 
and piano. 
 

 
 
Figure 6. Principal Component Analysis graph. It demonstrates why the computer’s accuracy for matching an 
audio recording with an instrument isn’t perfect. Viola is very far away from piano and ukulele, so it’s accuracy 
is 100%. However, a lot of the time, piano and ukulele get mixed up. As shown on the graph, the ■’s and x’s 
are super close together. 
 

Discussion 
 
Using models to classify different instruments is helpful to people who listen to music. The algorithm developed 
can be applied to the entire field of sound classification; AI can even surpass a human’s ability to identify 
sounds. For example, in a home or industrial setting, an AI algorithm can accurately identify machines that 
aren’t working based on the sounds they produce. Other applications of instrument classification are the auto-
matic sorting and searching of massive musical collections with ease, which could be useful to streaming plat-
forms that provide personalized recommendations to their users.  
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The data preprocessing quantified the difference in harmonic frequency patterns between viola, uku-
lele, and piano. The spectrograms clearly visualized the dramatic increase in harmonic frequency content in 
viola compared to ukulele and piano. This information guided the feature extraction process which compared 
the ratio of the amplitude of the first ten harmonic frequencies to the amplitude of the fundamental frequency. 
This resulted in a robust and reliable measure for the algorithm to separate different instruments.  

This study also found a way to identify the fundamental frequency in an audio recording. Setting the 
highest peak to the fundamental frequency assumes that each harmonic frequency has a diminishing amplitude. 
However, some recordings had an unexpectedly large volume of harmonics, possibly due to echoes around the 
room; some harmonics even reached higher amplitudes than the original fundamental frequency. As a result, 
the algorithm falsely believed a harmonic frequency was the fundamental frequency. 

To address this, the first peak, rather than the highest peak, was chosen to be the fundamental fre-
quency. The problem with this approach was that many false peaks that occurred before the actual fundamental 
frequency. During the brief silence before a note was played on the instrument, tiny random vibrations distorted 
the silence. This was fixed by identifying the top peak overall (which could either be the fundamental or har-
monic frequency, depending on the instrument), divided it by half, and setting that value to be a threshold. Then 
the algorithm calculated the first peak above that threshold to be the first fundamental frequency. 

The model utilized the simple but effective K-Nearest Neighbors algorithm to reach an accuracy of 
93% on the training dataset and 80% on the testing dataset. Specifically, the first iteration of the model trained 
the computer to separate instruments through analyzing the frequencies of training set of audio recordings, then 
tested its knowledge on the same set. The final iteration of the model trained the computer on the training set 
of audio recordings, and its performance was evaluated using the testing set of audio recordings.  

This study shows the feasibility of using machine learning to understand and distinguish between the 
timbre of different instruments the way that humans do. 

To further improve the accuracy rate of this engineering project, a larger and more diverse training 
dataset is required. With different musicians and settings, the real-world performance and accuracy will in-
crease. 
 

Conclusion 
 
This paper presents a machine learning approach to classify three instruments: viola, ukulele, and piano. This 
was achieved through analyzing the harmonic frequency content of the respective instruments and using the 
information in a feature space. The model reached an accuracy of up to 93%.  

This model allows anyone to figure out what instrument (piano, ukulele, viola) is being played in any 
audio recording of their choice. This can be applied to the broader world of sound classification, and machines 
can eventually surpass a human’s ability at identifying sounds. For example, it may be able to tell apart viola 
from violin, which the average person cannot do.  
 

Limitations 
 
The main limitations were that the audio recording had to be of one instrument and one pitch, instead of a string 
of various notes on an instrument, or many instruments playing together and overlapping. Only one instrument 
per pitch could be played because if there were multiple pitches being played, the frequencies would overlap 
and make it harder for clear patterns and relationships to be drawn by the algorithm. 

Furthermore, there are limitations to the current model that need to be considered before being imple-
mented into real world scenarios. Because the model was collected in perfect conditions—in a quiet room with 
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minimal background disruptions—selection bias could have occurred since it is not representative of all de-
ployment conditions. 

Furthermore, if the fundamental frequency is incorrectly classified, it throws off the rest of the algo-
rithm because the algorithm relies on the fundamental frequency to compute its integer multiples and find each 
harmonic frequency. For example, during the initial development of the model, consistent errors with detecting 
the fundamental frequency resulted in accuracies as low as 50%. These errors were solved by setting a minimum 
amplitude threshold and detecting the first peak that occurred above that threshold. 
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