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ABSTRACT 
 
Active Galactic Nuclei (AGNs) are a compact region at the center of galaxies that emit more energy than the 
rest of the galaxy itself. They emit light across the electromagnetic spectrum, from radio waves to optical light 
to high-energy X-rays. AGNs indicate the existence of highly energetic phenomena in the nucleus of the galaxy. 
Although AGNs were identified 60 years ago, our knowledge about their physical properties is limited. Quasars, 
a subtype of AGNs, provide some of the most intense forms of X-rays, which are among the most energetic 
light known. Furthering our understanding of X-rays in the dynamic environments of quasars will add to our 
understanding of how to benefit from their use on Earth. In my project, I study the X-ray brightness in quasars 
to develop six types of regression-based machine learning models for the X-ray brightness predictions. These 
six models were Stochastic Gradient Descent (SGD), Random Forest, Ridge, Lasso, Bayesian and the baseline 
linear regression model, built on the scikit-learn Python package. The training/testing split on the MILLIQUAS 
dataset was 80/20 percent, and each model was tuned on model-specific hyperparameters. Benchmarked with 
the normalized mean absolute error (NMAE), the top three performing models were the Bayesian (0.022%), 
Ridge (0.180%), and Lasso (0.183%), with the baseline NMAE at 0.284%. With this, we can learn more about 
the evolution of galaxies in the early Universe and understand how these dynamic environments came to be. 
 

Introduction  
 
Active Galactic Nuclei (AGN) present unique observational signatures that cover the full electromagnetic spec-
trum over more than twenty orders of magnitude in frequency. They are energetic astrophysical sources pow-
ered by accretion onto supermassive black holes in galaxies. Quasars are very bright, distant and active super-
massive black holes that are millions to billions of times the mass of the Sun. Quasars’ light outshine that of all 
the stars in its host galaxy combined. This project develops different types of regression-based machine learning 
models to predict the observed X-ray brightness emission of quasars in the X-ray spectra given the optical, near 
infrared and redshift properties. These six models were Stochastic Gradient Descent (SGD), Random Forest, 
Ridge, Lasso, Bayesian and the baseline linear regression model.  X-ray brightness predictions for quasars will 
enable researchers to learn more about the patterns of these energies and predictable methods to harness them. 
The X-ray spectroscopy of high redshift quasars can help determine the structural evolution of quasars and 
better understand the evolution of galaxies across cosmic time. Furthermore, this project utilized supervised 
machine learning for regression to aid with the X-ray brightness predictions. Each model was refined with 
model-specific hyperparameter tuning with an overall training/testing split of 80/20. Each model generated a 
mean absolute error (MAE), which tells us the average size of the error/mistake in prediction. The normalized 
mean absolute error (NMAE) value was then taken from the MAE. However, the NMAE was more useful 
because it provided a more balanced value in order to help compare the accuracy of each model against each 
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other. The MILLIQUAS dataset was used in this study, which comprises over 400,000 type-I quasars with 
numerical data for each quasar. 
 
Background 
 
Active Galactic Nuclei (AGNs) are a compact region at the center of galaxies that emit more energy than the 
rest of the galaxy itself.  They have extremely high luminosities (up to Lbol  ≈ 1048 ergs  s−1), making them 
the most powerful non-explosive sources in the Universe. Therefore, they are also visible up to high redshifts 
(z = 7.1).   

AGNs are also known as active supermassive black holes (SMBH) that emit jets and winds - actively 
gaining mass. Supermassive black holes are classically defined as black holes with a mass above 100,000 solar 
masses. 

All quasars are AGNs but not all AGNs are quasars. A quasar is an AGN that is viewed from a partic-
ular angle. In 1962, the first quasar was discovered because it looked extremely different from any other celes-
tial object qualitatively. Furthermore, in the graph of wavelength vs. flux (brightness) for stars, we see dips, 
however, in the same graph for quasars we see spikes. The dips represent absorption, while the spikes represent 
emission. There is no other area in astrophysics that relies more heavily on multi-wavelength studies than the 
field of AGNs. 
 

 
 
Figure 1. Graph of wavelength vs. brightness for stars, Source: hantsastro.org.uk 
 

 
 
Figure 2. Graph of wavelength vs. brightness for quasars, Source: NASA 
 

Recent international campaigns which monitor specific AGNs across various wavebands, are the key 
contributors to most of our knowledge of correlations between continuum (overall shape) and emission line 
properties. Emission lines emphasize the fact that glowing hot gas emits lines of light, while absorption lines 
happen when cool atmospheric gas absorbs the same lines of light. A similar pattern is illustrated through stars 
versus quasars. Stars keep getting colder as they move from the center - they are absorbing heat from the center, 
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while in quasars the super heated gas is on the outside of the supermassive black holes so it has to emit the 
energy, thus why quasars are such energetic objects in the X-ray spectra.  

The AGN contains a supermassive black hole (SMBH) surrounded by an accretion disk. The accretion 
disk feeds both the black hole and dusty torus.  Through the Hubble Space Telescope we can see the jets of 
ionized material being launched out of both ends of the AGN in radio images. The accretion disk is formed by 
rapidly rotating gas which slowly spirals onto a central gravitating body. This is how all the matter is making 
its way to the black hole. AGNs are powered by the extracted gravitational energy of inflating matter.  

 
 
Figure 3. Schematic representation of X-ray production in AGN, Source: isdc.unige.ch 
 

 
 
Figure 4. A model of the AGN from different angles, Source: NASA 
 

The electromagnetic spectrum is the full range of waves that transfer energy, organized by wavelength. 
It comprises different types of light/radiation. This spectrum ranges from radio waves to optical light to high-
energy X-rays. On the electromagnetic spectrum, the human eye can only see visible light. On the other hand, 
AGNs emit the entire spectrum, due to the complex interactions between the accretion, magnetic fields, scat-
tering, and jet activity properties. One key attribute of the dataset is “Z” or the redshift, which is the light when 
an object is moving away from us - as opposed to the blueshift which is the light when an object is moving 
towards us. Spectroscopy is the study of the absorption and emission of light and other radiation by objects, 
which is helpful when studying the physical properties of AGN. Hubble’s law states that redshifts in the spec-
trum of distant galaxies (and hence their speeds of recession) are proportional to their distance - velocity is 
proportional to distance because the universe is expanding, which is the basis for quasars. 
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Figure 5. Schematic representation of the spectral energy distribution (SED) of AGN. The primary emission 
emanating from the accretion disk of the AGN, reaches its highest intensity in the ultraviolet region. Source: 
Harrison (2014) 
 
Previous Studies 
 
Prior studies have been done towards predicting X-ray brightness for quasars. However, they used less sophis-
ticated datasets and models. In my project, I used six different regression-based models, while previous studies 
have only been able to use two to three max, with models such as Random Forest and just the baseline or 
‘vanilla’ linear regression mode. Additionally, other studies have done brightness prediction for various ener-
getic objects in the universe, including pulsars, XRB, etc., while my project focuses solely on quasars. My 
project also uses the most updated version of the MILLIQUAS quasar catalog dataset (updated in 2023), which 
prior studies have not been able to utilize. Instead, they have primarily worked with radio-selected AGN. The 
original way to find AGN was through radio selection, however, before we were only able to work with ‘radio 
loud’ AGN, not ‘radio quiet’ AGN. The primary difference between the two types of AGN is that the former is 
characterized by powerful radio emission.  
 

Dataset 
 
This study uses the MILLIQUAS (The Million Quasars) dataset to predict the X-ray brightness of quasars in 
the X-ray spectra. The MILLIQUAS dataset is a compendium of 907,144 type-I QSOs and AGN. However, 
due to the fact that not all AGN are quasars, only the data for quasars was used. There were 23940 rows and 18 
columns, overall producing 430920 total readings of quasar data. I used three different types of light properties 
available through the dataset, for predicting the X-ray brightness - the redshift, near infrared and optical light. 
I used three different wavelengths of near infrared light - short, medium and large wavelengths. For optical I 
used two different types of magnitudes - the red magnitude and the green magnitude, which conveys how bright 
the quasar is in either red or green optical light. To split the data across training and testing, I used 80% of the 
data for training and 20% of the data for testing. To help clean through the data I dropped all null values for 
readings of light. These null values most likely occurred due to the fact that the specific reading was not veri-
fied/taken for the certain quasar.  
 
Table 1. Guide to Features 
 

Feature Explanation 
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RA Right Ascension, Declination: 
Coordinates on the sky (longitude 

vs latitude) DEC 

NAME Name 

TYPE X-ray bright quasars 

Z 
Redshift: the larger the value, the 

farther away it is. 

ZCITE 
Where redshift information is 

coming from 

SC_EP_8_FLU
X X-ray flux (brightness) 

SC_EP_8_FLU
X_ERR Error in X-ray flux 

gmag 
Green magnitude (how bright it is 

in green optical light) 

e_gmag Error in green magnitude 

rmag_x Red magnitude 

e_rmag Error in Red magnitude 

imag 
Near infrared (shortest wave-

length) 

e_imag 
Error in near infrared (shortest 

wavelength) 

zmag 
Near infrared (medium wave-

length) 

e_zmag 
Error in near infrared (medium 

wavelength) 

ymag 
Near infrared (longest wave-

length) 

e_ymag 
Error in near infrared (longest 

wavelength) 
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Graph 1. Visualization of redshift in relation to the amount of quasars 
 

 
 
Graph 2. Visualization of the infrared data for all three wavelengths 
 

A major aspect of this project was feature identification, which is illustrated in the above figures. 
Redshift is a crucial feature in this dataset, which is light when an object is moving further away. Another 
feature that is important is the log X-Ray Flux, which was chosen after noticing the strong correlation as demon-
strated on the histogram on the right versus the left. Infrared magnitudes of short, medium, and long were all 
demonstrated as correlated with the presence of quasars through the histograms. Finally, through these histo-
grams, additional features of red and green magnitude were discovered as important. 
 

 
 
Figure 6. The color plots for the difference between the green and red magnitudes. A property called "color" is 
defined as the difference between magnitudes. Figure 6a shows the color plots with respect to redshift, as a 
function of the normal X-ray flux. Figure 6b shows this same data, however as the log(X-ray flux). Figure 6c 
shows the color as a function of redshift. The small range of color at the top and large range of color at the 
bottom of figure 6b, shows that it is much harder to predict X-ray flux of fainter quasars. 
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Methods 
 
Data Preprocessing 
 
After loading the MILLIQUAS dataset into my Google Collab notebook, I dropped all ‘null’ values in the 
dataset - values which were left blank, and therefore, do not tell us any valuable reading for the quasars. I also 
had to do data cleaning, mainly to ensure that the X-ray flux error was always greater than three and that the 
error in any magnitude is less than 0.2. Lastly, I performed data visualization by creating histograms and scat-
terplots for comparisons of the data attributes.  
 
Model Development and Evaluation 
 
After researching various aspects of AGNs and quasars, including relevant attributes for their X-ray brightness 
prediction properties, I decided on six different regression based models. These models were Stochastic Gradi-
ent Descent (SGD), Random Forest, Ridge, Lasso, Bayesian and the baseline linear regression model, each built 
on the scikit-learn Python package. I split and shuffled the dataset into a training set and a testing set, the former 
containing 80% of the dataset and the latter containing 20% of the dataset. I ensured to use a computer to support 
the Google Collab Python notebook, so that I would be able to import the relevant models. I trained and tested 
each type of model on both the training and testing dataset, and kept reshuffling the data and repeating these 
steps for a total of four trials. I tried to observe key characteristics of each of the models during training and 
testing, for performance scalability. Every model, other than the baseline linear regression model was tuned on 
model-specific hyperparameters (i.e. ‘alpha’), in order to provide the best results. Models were evaluated based 
on mean absolute error (MAE) and normalized mean absolute error (NMAE). Lastly, I analyzed each of the 
regression-based models’ results and ranked them in their X-ray brightness predictions performance in the de-
scending order of performance, by their normalized mean absolute error (NMAE). 
 

Results and Discussion 
 
The baseline linear regression model had a MAE of 0.397% and a NMAE of 0.284%. However, the NMAE 
value is more useful because it provides a more balanced value in order to help compare the accuracy of various 
other models. It is important to note that the NMAE can be regarded as the accuracy after subtracting by 1. As 
this is the ‘vanilla’ linear regression model, no further hyperparameters could be tuned in order to make this 
model more efficient. 

Overall, the Stochastic Gradient Descent (SGD) regression model had the highest training time, and 
had results that were greatly fluctuating during hyperparameter tuning. The initial NMAE was 0.355%, and the 
hypertuned NMAE was around 0.263%. The SGD model was hypertuned based on the learning rate by a scale 
of 1.  

The Random Forest Regressor had an initial NMAE of 0.294%, and a hypertuned NMAE of 0.264%, 
showing that hypertuning the model did not majorly impact its performance. The Random Forest model was 
hypertuned on the ‘max depth’ parameter, and overall showed a trend that an increase in depth led to an increase 
in model performance.  

The Ridge Regression model was one of the models that performed the best. It had an initial NMAE 
of 0.248% and a hypertuned NMAE of 0.180%, showing a significant increase in model performance post 
hypertuning. This Ridge Regression model was hypertuned on the parameter ‘lambda’, and showed little fluc-
tuation in the grid search plot in terms of NMAE.  
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The Lasso Regression model, was also a high performing model, achieving an initial NMAE of 
0.221%, and a hypertuned NMAE of 0.183%. This model was hypertuned on the parameter ‘alpha’, and showed 
a general pattern of an increase in error with a higher ‘alpha’ value. 

The highest performing model was the Bayesian Regression model. It achieved an initial NMAE of 
0.249% and a hypertuned NMAE of 0.022%. This model was also hypertuned on the parameter ‘alpha’, and 
overall showed a significant increase in performance. Furthermore, since most of the models were relatively 
similar in training time, the better performance of the Bayesian model is something that can be scaled to larger 
amounts of data. 
 

 
 
Graph 3. The hyperparameter search for the Lasso Regression model through a Grid Search Plot. 
 

 
 
Graph 4. The hyperparameter search for the Bayesian Regression model through a Grid Search Plot.  
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Graph 5. The hyperparameter search for the Stochastic Gradient Descent (SGD) Regression model through a 
Grid Search Plot.  
 

 
 
Graph 6. The hyperparameter search for the Ridge Regression model through a Grid Search Plot.  
 

 
 
Graph 7. The hyperparameter search for the Random Forest Regression model through a Grid Search Plot.  
 

On the whole, adding complexity to each of the models led to a better regression score - lower NMAE. 
Furthermore, these models show that predicting the X-ray flux of quasars is not straight forward, so adding 
more complexity to each of the models will aid in increasing accuracy. Comparing the performance of the 
models to the data visualization plots (Figure 6), a correlation can be identified. The X-ray faint end of quasars 
has greater diversity - as demonstrated in Figure 6, which is where these six models seem to have difficulty. It 
is also important to note that all the quasars with a high X-ray flux tend to have a small range of color. Upcoming 
telescopes, which can observe millions of the faint end of quasars, will reveal various galaxies in the early 
universe, alongside interactions between black holes and surrounding material, which we have not seen before. 
This will ultimately be shining light on how galaxies form and evolve through Cosmic time. 
 

Conclusion 
 
This study tested six different regression-based Machine learning models to find the most performant model in 
the MILLI-QUAS dataset. These six models were Stochastic Gradient Descent (SGD), Random Forest, Ridge, 
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Lasso, Bayesian and the Baseline Linear Regression model. Each of these models developed in this project 
demonstrate significant strides towards better methods of X-ray flux (X-ray brightness) prediction so as to 
improve the efficiency of predicting the X-ray flux of a quasar and harnessing its energy for usage on earth. To 
train and test each of the models, an 80/20 split of the MILLI-QUAS dataset was used. Additionally, each model 
was tuned on model-specific hyperparameters. These hyperparameters include ‘alpha’ for Lasso and Bayesian 
regression, ‘lambda’ for Ridge regression, ‘max_depth’ for the Random Forest regressor and the learning rate 
for SGD regression. The Grid Search Plots for each model were also graphed in order to analyze the effects of 
tuning the hyper-parameters on model performance. Overall, the top three performing models based on the 
Normalized Mean Absolute Error (NMAE) were the Bayesian (0.022%), Ridge (0.180%), and Lasso (0.183%), 
with the baseline NMAE at 0.284%. After thorough analysis of model performance, the best performing model 
was the Bayesian Regression model. This may be due to the fact that Bayesian Regression employs prior belief 
or knowledge about the complex and/or ambiguous data to “learn” more about it which provided a more accu-
rate prediction of the AGNs’ X-ray brightness. The performance of these specialized models shows promise for 
future experiments with a fine-tuned Reinforcement Learning model through astrophysicist feedback and addi-
tional explain-ability through the integration of OpenAPI. With this, we can learn more about the evolution of 
galaxies in the early Universe and understand how these dynamic environments came to be.  
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