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ABSTRACT 
 
The COVID-19 variant’s complexity and the dire consequences of the variant spread are the inspirations behind 
the profound research on modeling and predicting new emerging variant surges. Multiple factors, including the 
variant characteristics, vaccination rate, the immune response of vaccinated individuals, and disease prevention 
health policies, impact the COVID-19 infection trend. The advancements in machine learning and neural net-
work models, combined with the growth in computing, have demonstrated outstanding potential in modeling 
and predicting epidemic diseases. This research presents the modeling and prediction of the combined COVID-
19 variant infection trends using the Holt-Winters exponential smoothing and seasonal auto-regressive inte-
grated moving average with exogenous factors (SARIMAX) time-series machine learning models and recurrent 
neural network (RNN) long short-term memory (LSTM) model. Real-world United States COVID variant data 
from the Centers for Disease Control and Prevention (CDC) is used for prediction. The SARIMAX model 
factoring the seasonality of COVID-19 infections showed higher prediction accuracy than the Holt-Winters 
model, which is heavily weighted towards the most recent trends. The LSTM model had the best prediction 
accuracy of 91% with the lowest root mean square error (RMSE) values due to its property of selectively re-
membering patterns for long duration and the forget gates that correct the vanishing gradient problem, mini-
mizing the error losses. This research demonstrates the promising application of the neural network deep learn-
ing models for epidemic disease modeling and prediction, enabling timely assessment of different policy deci-
sions to mitigate the impact of an epidemic. 
 

Introduction 
 
The COVID-19 disease has severely impacted livelihood, economy, and people’s well-being worldwide over 
the past few years. COVID-19 and its variants have caused more than 6 million hospitalizations and have 
claimed more than 1 million lives in the United States, according to data tracked by the Centers for Disease 
Control and Prevention (CDC), and over 6.5 million deaths worldwide, according to the World Health Organi-
zation. Studies conducted in 2020 showed that COVID-related deaths were significantly higher among persons 
aged 65 years or older and from minority racial and ethnic groups (Wortham et al., 2020; Gold et al., 2020). 
COVID-19 has many mutations that can proliferate, making it more deadly and unpredictable. SARSCoV-2, 
the virus that causes COVID-19, continues accumulating mutations in its genetic code, and new variants are 
expected to evolve. The recent Omicron variant was more transmissible than its predecessors and quickly dom-
inated the infections (Kannan et al., 2021; Shrestha et al., 2022). The COVID variant’s complexity, lack of 
understanding of its catalysts, and dire consequences of the variant spread, including its disproportionate impact 
on the aged and ethnic minorities, are the inspirations behind the profound research on modeling and predicting 
new emerging variant surges. A reasonably accurate infection forecasting model of the combined emerging 
COVID variants is required. 
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Over three years of COVID data from millions of people is available from the CDC data tracker to 
build prediction models of emerging variant surges. While good historical data is available, COVID infection 
modeling and prediction is a daunting task due to the multiple variants contributing to the infections at any 
given point in time, the complex nature of the variants’ characteristics, such as infection rate and duration 
combined with multiple external factors such as preventative care measures, health care resources, and de-
mographics. Since the inception of the COVID-19 pandemic, various research using different modeling tech-
niques and approaches have been conducted to model and predict COVID-19 infection trends. Polo et al. (2020) 
pointed out the challenges with epidemiological disease prediction using classical surveillance approaches and 
recommended an approach for implementing wastewater-based epidemiology prediction. Zou et al. (2020) pre-
sented a novel epidemic model by considering the untested/unreported cases trained by machine learning mod-
els for forecasting COVID-19 spread. Alali et al. (2022) developed a Bayesian optimized Gaussian process 
regression (OGPR) model applied to the historical COVID cases in India and Brazil, which showed lower 
prediction errors compared to other static and dynamic models, such as Boosted Trees, Decision Trees, Random 
Forests, and XGBoost. Narin et al. (2021) trained convolutional neural network ResNet and Inception deep 
learning models on pneumonia-infected patients’ X-ray radiographs, attaining a high COVID-19 disease pre-
diction accuracy. 

Multiple research studies have been conducted since the inception of the COVID pandemic to predict 
infections for a specific population in a particular region or a variant using statistical or machine learning tech-
niques. To the author's knowledge, there is a lack of prediction techniques to forecast the combined variants’ 
COVID-19 infection trend despite good historical COVID data availability and advances in mathematical mod-
eling, artificial intelligence, and machine learning. COVID-19 infections follow a time series where the infec-
tions happen over time. This research presents advanced time series modeling techniques that are highly effi-
cient in forecasting COVID-19 combined variant infections with acceptable accuracy. Holt-Winters exponential 
smoothing and seasonal auto-regressive integrated moving average with exogenous factors (SARIMAX) mod-
els that are better for short-term predictions (Omane-Adjepong et al., 2013) and the recurrent neural network 
(RNN) long short-term memory (LSTM) model that has shown to be far superior to conventional regression-
based models (Siami-Namini et al., 2019) will be evaluated and compared for best prediction outcomes. The 
prediction model, with acceptable prediction accuracy and simplistic application, can assist proactive policy 
decision changes around vaccination forecasting, hospitalization resources, and medical equipment needs and 
ensure a swift response to an infection surge to mitigate the exposure of an epidemic. 
 

Method 
 
Holt-Winters and SARIMAX time-series machine learning models and LSTM RNN model are trained and 
tested on the publicly available US COVID variants aggregated cases data tracked by the CDC to model and 
predict infection cases. Various tests were run on the data to select the best model parameters to attain the 
highest prediction accuracy. The model prediction results were compared using the standard mean absolute 
error (MAE) and root mean square error (RMSE) metrics. The best prediction model obtained from this exper-
iment can be integrated with the case tracking system to perform real-time predictions for the entire population 
or a subset to understand the impacts of any new emerging variant and actions required to mitigate the infection 
growth. The model parameters can be tuned in real-time as it learns from the new variant behaviors to improve 
the prediction accuracy over time. 
 
Experimental Design 
 
The COVID-19 infection modeling design included data acquisition, data processing, cleaning and preparation, 
model selection, coding and model development, and prediction assessments, as shown in Figure 1. Real-world 
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US COVID-19 variant infection case data were extracted from the CDC tracking database. The models were 
trained and tested on 21 months of COVID variants aggregated case data. The COVID-19 cases data were 
processed, grouped by week, and trended over time. 
 

 
 
Figure 1. Experimental design steps. 
 

Time-series machine learning and RNN models were selected for COVID-19 infection case modeling 
and prediction for their versatility, simplicity, and applicability. Time series analysis can be performed on the 
COVID-19 case data, as it can be grouped and ordered in time. Time series can generally be decomposed into 
three components: trend, seasonality, and noise. The upward trend shows the series is increasing, the downward 
trend shows the series is decreasing, and no trend shows the series is constant. COVID case data was plotted as 
shown in Figure 2 using Python’s statmodels library seasonal decompose to understand the seasonality and 
noise in the case data and whether the case time series is additive or multiplicative. Seasonality describes the 
periodic signal in the time series, and the noise signifies the variance and volatility of the time series. The time 
series plots show that the COVID case trend is non-linear and does not always increase or decrease. Hence, the 
“multiplicative” trend parameter was used for modeling. The seasonal plot shows an infection surge roughly 
every six months. Therefore, the seasonality of 6 months (24-week period) was factored into the models. 
 

 
 
Figure 2. US COVID-19 infection cases. Trend, Seasonality, and Noise. 
 
Models 
 
The model development and coding were performed in Python programming language. Models were imple-
mented using the available libraries and modules: numpy for working with multidimensional arrays, pandas for 
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working with datasets, matplotlib for data visualization and plotting, statsmodels for conducting statistical mod-
eling and testing, pmdarima for building SARIMAX model, and Sequential, LSTM and Dense modules from 
keras for building the LSTM model. COVID-19 case data was loaded into a pandas data frame and split into 
80% train and 20% test data. Training data was prepared and fitted to the model for prediction. Training data, 
actual cases, and predicted cases were plotted.  
 
 
Holt-Winters Model 
Holt-Winters exponential smoothing model was first selected for prediction due to its simplicity of implemen-
tation. Based on the results from the seasonal decomposition of the COVID-19 case data, the multiplicative 
trend and seasonality with a seasonal period of 6 months (24 weeks) were considered. An optimized best-fit 
model fitting approach was used. 
 
SARIMAX Model 
The SARIMAX model was chosen next to account for the seasonality of the COVID-19 infection cases. Based 
on the results from the seasonal decomposition of the COVID-19 case data, the multiplicative trend and sea-
sonality with a seasonal period of 6 months (24 weeks) were considered. Ad-Fuller and Kwiatkowski–Phillips–
Schmidt–Shin (KPSS) tests were run to understand the stationarity. Both tests showed that the COVID-19 in-
fection case data was non-stationary. The case data was transformed using the differencing technique, making 
it stationary. The model was trained with varying seasonal and non-seasonal orders. The final parameters chosen 
were (0,0,1) (1,0,1) [24], which had the lowest Akaike information criterion (AIC) values, indicating the best 
model fit. 
 
LSTM Model 
The LSTM model was chosen as it has been reported to be far superior to the ARIMA model in attaining higher 
prediction accuracy with significantly lower error rates for time-series data prediction (Siami-Namini et al., 
2018). The COVID-19 case dataset was normalized using the MinMaxScaler and split into the train and test 
sets. Train data was then reshaped into a 3D array suitable for input to the LSTM model. Keras Sequential() 
function was used to build the LSTM model by adding two layers of 50 units each, including a dense output 
layer. Adam optimizer was used to compile the model. 98 epoch runs with a batch size of 8 were used to train 
the model. Multiple iterations of the parameter fine-tuning were performed to attain the best prediction results. 
 
Model Performance Evaluation 
 
MAE and RMSE measurements were chosen to evaluate the model's performance due to their applicability in 
efficiently evaluating errors in time series forecasting. A model with the lowest MAE and RMSE values is the 
most accurate. MAE measures the average absolute value of the difference between predicted and actual values 
at a given time. The RMSE measures the average magnitude of the error, where the errors are squared before 
they are averaged, giving a relatively high weightage to large errors. RMSE is used when large errors are un-
desirable (Saigal & Mehrotra, 2012). 
 

MAE = 1
𝑛𝑛
∑ |𝑃𝑃𝑡𝑡 − 𝐴𝐴𝑡𝑡|𝑛𝑛
𝑡𝑡=1  

 

RMSE = �1
𝑛𝑛
� (𝑃𝑃𝑡𝑡 − 𝐴𝐴𝑡𝑡)2

𝑛𝑛
𝑡𝑡=1  
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Where 𝐴𝐴𝑡𝑡 is the actual values at the time t, 𝑃𝑃𝑡𝑡 is the predicted values at time t, and n is the number of 
predictions.  
 

Results 
 
The Holt-Winters model with the exponential smoothing technique was applied using the “multiplicative” trend 
and seasonal parameters. An optimized set of parameters was used to generate a best-fit model. The training 
data, actual cases, and model-predicted cases were plotted as shown in Figure 3. The initial few weeks of pre-
diction results looked promising. However, the errors increased significantly towards the end, with the MAE 
value of 307,444 and the RMSE value of 370,711, both significantly high and showing weak prediction results. 

 
 
Figure 3. US COVID-19 infection case forecasting using Holt-Winters. Training case data, actual cases, and 
predicted cases. 
 

SARIMAX model with a “multiplicative” trend, a 24-week seasonal period, and an optimized set of 
order parameters with the lowest AIC generated the best-fit model. The training data, actual cases, and model-
predicted cases were plotted as shown in Figure 4. The SARIMAX model MAE value of 206,052 and RMSE 
value of 214,947 are lower than the Holt-Winters but still significantly high, showing weak prediction results. 
The SARIMAX model showed consistently higher prediction accuracy throughout the testing period. 
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Figure 4. US COVID-19 infection case forecasting using SARIMAX. Training case data, actual cases, and 
predicted cases. 
 

The LSTM model with Adam optimizer, batch size 8, and 98 epochs provided the best fit. The training 
data, actual cases, and model-predicted cases were plotted as shown in Figure 5.  
 

 
 
Figure 5. US COVID-19 infection case forecasting using LSTM. Training case data, actual cases, and predicted 
cases. 
 

The LSTM model had the lowest MAE value of 39,297 and RMSE value of 54,225 compared to the 
Holt-Winters and SARIMAX models and had the highest prediction accuracy of 91%, as shown in Table 1. 
 
Table 1. COVID Infection Prediction Comparison. 
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Model MAE RMSE Accuracy 
Holt-Winters 307,444 370,711 19% 
SARIMAX 206,052 214,947 43% 

LSTM 39,297 54,225 91% 
 

Discussion 
 
A significant amount of research has been conducted using multiple methods and modeling techniques since 
the inception of the pandemic to predict COVID-19 infections. Most of the research framework for COVID-19 
predictions has focused on a specific localized set of COVID-19 infection data collected from wastewater epi-
demiology, hospital x-rays, and historical cases of specific regions or variants using traditional machine learn-
ing models. This research presents a very efficient and simplistic COVID-19 infection prediction technique 
applied to combined variants’ infection time-series data using Holt-Winters exponential smoothing, SARI-
MAX, and LSTM models that have not been explored previously to the author’s knowledge. The research was 
performed on 21 months of US COVID variants aggregated case data. The seasonal plot of COVID cases 
showed an infection surge roughly every six months attributed to the summer and winter holidays when large 
people gatherings happen, and more people get infected with the virus, resulting in factoring six months (24-
week period) seasonality into the models. The Holt-Winters exponential smoothing model prediction was highly 
biased towards the last few weeks of train data due to the model’s characteristics of the weights decaying ex-
ponentially from the most recent to the oldest historical value, which resulted in a degradation of prediction 
accuracy over time and missing the seasonal impact of COVID variant surges. The SARIMAX model showed 
higher prediction accuracy, specifically in the seasonality period, than the Holt-Winters model, which is heavily 
weighted towards the most recent trends. The LSTM model had the best prediction accuracy of 91% and the 
lowest RMSE value due to its property of selectively remembering patterns for long durations. LSTM has the 
forget gates that correct the vanishing gradient problem seen in the recurrent neural networks, which minimizes 
the error losses. This property of LSTM is beneficial for COVID-19 infection modeling, specifically during 
new emerging variant-related infection surges. It was also noticed that increasing the training times with more 
epoch runs did not improve the performance of the trained LSTM model. The model can be trained further 
using more extensive and varied datasets from multiple countries using an optimized set of hyperparameters, 
including using the bi-directional component of the LSTM to improve accuracy (Sunny et al., 2020). Future 
work will extend the modeling and prediction benefits to other US regions, countries, and specific hot spots 
encountering the COVID variant surges.  
 

Conclusion 
 
This study demonstrates the successful deployment of time-series Holt-Winters and SARIMAX machine learn-
ing and LSTM RNN deep learning models to forecast combined variant COVID-19 infections with acceptable 
accuracy. Modeling performed on the US COVID variants aggregated case data showed that the SARIMAX 
model was more efficient in handling the seasonality in the infection trend than the Holt-Winters model, which 
is heavily weighted towards the most recent trend. The LSTM model outperformed with the best prediction 
accuracy of 91% and the lowest RMSE and MAE values due to its property of selectively remembering patterns 
for long durations. The prediction model can easily be deployed on the COVID-19 cases tracking websites for 
real-time predictions, enabling swift actions to mitigate the infection surge. This research’s findings and the 
success of the neural network models prompt further research into developing and implementing advanced 
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deep-learning neural networks in the healthcare industry for accurate, early detection of diseases. Disease mod-
eling and prediction allow for better assessment of different policy decisions and illuminate achievable condi-
tions to mitigate the impact of an epidemic.  
 

Limitations 
 
The LSTM model performance results showcase an effective approach to handling complex datasets, resulting 
in commendable prediction accuracy. However, the modeling and forecasting were performed on the limited 
COVID data from the US only, and further expansion to other states, regions, and countries is needed to gain 
higher confidence and broader acceptance. 
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