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ABSTRACT 
 
This project aims to reduce the emissions and energy costs in a pollution riddled country like India by optimiz-
ing the energy output from power plants. The emissions/costs are minimized using Mixed Integer Linear Pro-
gramming (MILP), an optimization tool that accounts for linear constraints and objective function. Utilizing 
the MILP results allows for the creation of Unit Commitment and Economic Dispatch (UC/ED). UC determines 
a schedule for which power plants should be on or off at which times while accounting for constraints such as 
startup/shutdown costs and ramping flexibility. Economic Dispatch optimizes power generation levels for each 
specific power plant while considering constraints such as meeting the energy demand and minimum/maximum 
generation limits to be found. Virtual Power Plants (VPPs) are the real-world application of our optimized 
UC/ED findings as multiple decentralized energy sources, power plants in this case, can aggregate resources 
and function as a singular plant. It can recalibrate energy usage based on data such as hourly power demand, 
weather, fuel source, etc., and apply UC/ED by using constantly updated real-time data. A Random Forest 
Regressor machine learning model which predicts the gains in terms of CO2 emissions of having VPP assets in 
the power grid was used. The accuracy at 70F, 73F, and 76F cooling points were 98.89%, 97.76% and 87.67% 
respectively. A machine learning model is used instead of the MILP model as it works much faster and can be 
feasibly used for day-to-day operations.   
 

Introduction 
 
Air Pollution is a world-wide problem which causes 7 million premature deaths each year (World Bank, 2023). 
According to IQAir in 2022, India was ranked 8th in the most polluted countries in the world (IQAir, 2022). 
Power plants account for 37% of GHG emissions in India, a major source of energy, but also a major source of 
pollution (Chateau, 2023). Most power plants don’t run on renewable energy sources, in fact, most of them run 
on non-renewable energy sources. Harboring a majority of coal power plants and the largest population, India 
has a high pollution rate and costs from the hundreds of power plants due to the high demand. Reducing pollu-
tion and costs from power plants is a starting point in helping India to reduce its GHG emissions.  

Virtual Power Plants (VPP), a niche technology, can be used to minimize the emissions and costs of 
power plants in India and across the world. A VPP is a concept where multiple decentralized energy sources, 
power plants in this case, aggregate resources and function as a singular plant (U.S. Department of Energy). 
VPPs optimize the consumption and output of energy sources by making schedules and power outputs fre-
quently based on constantly changing daily data. Additionally, VPPs can decrease the reliance on non-renewa-
ble energy sources by aggregating and coordinating resources from multiple energy sources, including renew-
able energy, to have a more efficient output. 
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In terms of current work on VPPs, the United States has also been incorporating Virtual Power Plants 
in states like California, Hawaii, Massachusetts, Utah, Vermont, and more through companies like Sunrun and 
SunPower corp (Inside Climate News, 2023). They are also currently being implemented across the world in 
places like South Australia, Japan, and Europe by companies such as Statkraft, Shell-owned, Next Kraftwerke, 
and Tesla (Reuters, 2023). 

Machine learning can be used to solve this problem by creating a schedule of optimal power output 
for power plants. This method is called Unit Commitment and Economic Dispatch (UC/ED) which can optimize 
the high emissions and costs in India. More specifically, UC helps determine a schedule for which power plants 
should be on or off at which times while accounting for several constraints such as startup/shutdown costs and 
ramping flexibility. ED allows for the optimal power generation levels for each specific power plant while also 
considering constraints, such as meeting the energy demand and minimum/maximum generation limits to be 
found (Watson, 2019). 

This project is meant to extend the use of  VPPs to a country that can greatly be benefitted by this 
technology, as India struggles with poverty and pollution, not to mention the extreme weather during summer 
and monsoon seasons. Focusing on helping the individual person first, the project targets the residential sector 
of northern India. By starting out in northern India, there is hope for future work that can apply VPPs to the 
entire country and to other sectors and cut the bills and emissions not only for residents, but for big industries 
as well. Emissions and costs will be minimized using MILP and the predictive accuracy will be measured from 
the VPP as implementation in real life will require real-time evaluations as data changes from day-to-day oper-
ations. The efficiency and practical use of VPPs are shown by the results of the machine learning model as it 
proves the real-time capability of VPPs to coordinate multiple power plants. 
 

Literature Review 
 
The Indian power sector is composed of mostly non-renewable energy sources with plants split into three cate-
gories: thermal, hydro, and nuclear. Due to the heavy use of non-renewable resources, pollution and system 
costs are high and need to be solved in an impoverished country like India. VPPs are the bridge to optimization 
and efficiency. The nameplate capacity of the plants was found through listing values from an interactive map 
of power plants in India (National Informatics Centre, Government of India, 2023). 
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Figure 1. Location and nameplate capacity of power plants by type (Hydro, Thermal, Nuclear). This project 
only uses data from the Northern Region. 
 

According to the Rocky Mountain Institute, VPPs enhance grid reliability. By 2030, VPPs are esti-
mated to reduce peak demand in the United States by 60 gigawatts and could grow upwards to 200 gigawatts 
by 2050 (Brehm, et al., 2023). This ties in with VPPs ability to reduce emissions as less power is being released 
from the power plants. Not only that, but VPPs are said to reduce expenditures by 17 billion dollars in the power 
sector by 2030 in the United States (U.S. Department of Energy, 2023). India can apply the same principles and 
save money for millions of people and provide a better quality of life than they are used to in a highly polluted 
environment. India is currently planning on weaning off of non-renewable resources but is struggling due to a 
lack of infrastructure (Banerjee, 2023). VPPs are beneficial as they provide real time decisions based on the 
current supply/demand and power consumption/generation while at the same time keeping the grid reliable.  

Flexibility Analysis of Thermal Generation for Renewable Energy Integration in India: This article 
shows the need for stability by quickly responding to changes in renewable energy with thermal power plants. 
As reported by (Chand, et al., 2020), the integration of renewable plants in India’s National Grid will require 
that the power system responds quickly to changes in the electricity output.  

A conceptual review on transformation of micro-grid to virtual power plant: Issues, modeling, solu-
tions, and future prospects: VPPs can better renewable energy integration, supply/demand, and flexibility of the 
system using computer models. VPPs are supposed to provide benefits to the environment without sacrificing 
other necessary components such as stability. There are future prospects in the works to realize the full power 
of VPP and what it can do. This article highlights the benefits of VPPs in a theoretical sense but mentions that 
they need to be applied and used to see the extent of their full power (Panda, et al., 2022). 

Optimization of energy consumption based on orientation and location of the building: Residential 
energy consumption in India is increasing and this situation needs to be addressed. By taking in several param-
eters about the buildings such as height, window material, roof material, etc., we can optimize the energy con-
sumption in India and many other regions and buildings as well. Data given from these parameters can help 
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provide VPPs with valuable information when trying to distribute power across the grid optimally and will lead 
to a more accurate optimization of costs and emissions for residents (Renuka, et al., 2022). 

Comprehensive review of VPPs planning, operation and scheduling considering the uncertainties re-
lated to renewable energy sources: Distributed Energy Sources (DERs) have been driven by concerns with the 
environment with clean energy and filling the demand as well. However, VPPs allow for a smart system which 
can balance supply/demand, power consumption/generation, etc. VPPs also keep the grid stable with real time 
decisions and integrating renewable energy sources as well (Ullah et al., 2019).  
 

Data 
 
The data was found from different sources including Kaggle, known for having a variety of datasets, govern-
ment websites, previous articles published, and technical reports. Kaggle provided data that was the basis of the 
project such as the power demand, power generation, and power consumption. (National Power Portal, 2017-
2020), (POSOCO, 2019-2020) 

A list of where all the datasets came from and their purpose is below: There are 129 power plants in 
northern India in 2023 which are all composed of either thermal, hydro, or nuclear power plants. Thermal power 
plants were either considered coal or biomass fueled.  
1. Although data on emissions of power plants specific to northern India was not available, Consumer Ecol-

ogy provided source emissions numbers for all fuel source type power plants (Consumer Ecology, 2022). 
2. This project focuses specifically on residents in northern India; therefore, the demand is proportional. The 

constant used was 24.74% as the percentage of residents in northern India (Energy Statistics India, 2023). 
3. Power plants take time to startup/shutdown, and each startup/shutdown is associated with some cost. Power 

plants also have a minimum on and off time as they can’t be turned on again immediately. Additionally, 
causing major changes in power plant power generation at fast rates is not advised, therefore they are 
ramped up and down. Ramp rate is the rate per minute it takes to get to the maximum output. Data in India 
was not available for this factor, so ramp rates from the United States are used in the model. Nuclear power 
plants are on at all times and a ramp rate does not apply to these plants (Xu, et al., 2017). 

4. Fuel prices are unique for each source (biomass, gas, coal, and nuclear), therefore different datasets were 
taken (Sokrethya, et al., 2023), (IEA, 2021), (ET Bureau, 2023), (World Nuclear Association, 2023). Since 
there was one biomass plant in all of northern India, the specific cost for that plant was found. The nuclear 
power plant prices are from the United States as Indian prices were unavailable. Hydro power plants do 
not have any fuel costs and nuclear plants fuel costs were too insignificant and were therefore made 0.  

5. Heat rate is the amount of energy used by a power plant to generate 1 Btu (British Thermal Unit) per Kwh 
(Kilowatt Hour). In minimizing, heat rate is a factor that is multiplied with the fuel costs and power demand 
for each power plant fuel source type so total costs can be minimized using the machine learning algorithm 
(U.S. Energy Information Administration (EIA)).  

6. Biomass heat rate is not available from this dataset and was alternatively found in another dataset (Wiltsee, 
2000). 

7. Data from India was not available, therefore power plant ramp heat rate from the United States is used. 
Since power plants in India are not as efficient as the ones in the United States, a constant is multiplied to 
the heat rates for all sources of power plants to generalize the data to northern India (IEA, 2009).  

8. In order to make sure that units match when multiplying fuel costs, heat rate, and power demand in the 
minimizing model, an energy conversion factor is needed to convert the costs (based on fuel source) to 
$/MBtu (Hazel, et al., 2019). 

9. For power plants to be viable and worth using, they need to produce a percentage minimum of their name-
plate capacity. This percentage is different for all types of power plants (hydro, coal, gas, nuclear, and 
biomass) (Government of India Ministry of Power, 2023), (Lens, 2014), (World Nuclear Association, 
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2023), (Deaver, 2019). The value for coal was generalized to India from European data. Biomass data was 
not available, therefore a recognized baseline of 25% found from California power plants was used. 

10. To minimize system costs, a tax of $35 per ton of CO2 is added to the model (Parry, 2019). 
Daily data is not sufficient because an optimal and accurate schedule would require hourly data for the 

unit commitment to provide a day/night schedule. To get more accurate results and a better understanding of 
how daytime/nighttime may affect power demand, costs, and power plant schedule, BEOPT (Building Energy 
Optimization Tool) was used. BEOPT provides data based on a 3D design of a house from the users and pa-
rameters such as weather (EnergyPlus), roof materials, neighbor distance, window material, cooling point, and 
much more. Figure 2 shows the BEOPT model. To simulate northern India best, data from 5 different locations 
in northern India were averaged to get the most accurate result. The 5 locations were Allahabad, Jaipur, Luck-
now, New Delhi, and Amritsar. These were the most populous cities in northern India with available weather 
data. BEOPT values were found at three different cooling setpoints (70F, 73F, and 76F) to see how thermostat 
temperatures affect the power demand throughout the year and model accuracy in predicting emissions/costs. 
After following parameters and the house design of a previously done model of India, data on the hourly kilo-
watt usage, outdoor bulb temperature, the dew point, etc., values were found and later manipulated in either the 
minimizing or predicting model. Figures 3 and 4 show examples of the hourly energy demand.  
 

 
 
Figure 2. Model house created with the BEOPT tool to model Indian dwellings. 
 

Although the datasets encompass several years of data in each dataset, focusing on 2019 was beneficial 
because it was common among all data found outside of Kaggle as well. Additionally, 2019 is before the Covid-
19 pandemic, which could have heavily affected the data due to a large percentage of the population staying at 
home, which could have increased the power consumption/demand due to more appliances. For factors that are 
specific to the fuel source of a power plant, values were randomized for each power plant based on fuel source. 
The data described above is used to either minimize the emissions and costs or predict them. 
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Figure 3. Hourly power demand of the Northern India Region, January 30th. The three lines signify the three 
different cooling points, showing us the difference in hourly demand based on the thermostat. 
 

 
 
Figure 4. Hourly demand for May 1st, a summer day, when you might expect the AC to be turned more, 
increasing the demand. 
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Figure 5. This partial table shows the data points taken from the several datasets and clean/filtered into one. 
This shows the randomized values for each data factor and its consistency with the power plant fuel source. 
Note: All columns of data are shown 
 

Methods 
 
The goal of the project is to integrate a smart system into India to optimize the energy to minimize cost and 
CO2 emissions using a Virtual Power Plant (VPP). The energy assets include wind turbines, hydro energy, solar 
panels, etc. The VPP optimizes the consumption and output of energy sources. From the 129 power plants in 
Northern India, ones in the same vicinity can harness a VPP to minimize the emissions and costs which will 
make a large impact in pollution riddled India that is a leader in greenhouse gas emissions. 

The hourly energy consumption of the 5 sites was estimated with the BEOPT tool and parameters 
followed by the paper listed in the Literature Review. Then, the hourly demand data was adjusted from the 
BEopt Tool with the daily demand data of Northern India. This allowed for a visualization of the change in 
demand in a day/night schedule and a more accurate result given the many more data points for the machine 
learning model to learn from for its prediction. The data were fitted using a normalization factor. Based on a 
day with hourly data, the demand percentage of each hour relative to a specific day would be the normalization 
factor for that hour. An example of the formula for one hour would be  � ℎ𝑜𝑜𝑜𝑜𝑜𝑜 #1 𝑒𝑒𝑒𝑒𝑒𝑒𝑜𝑜𝑒𝑒𝑒𝑒 𝑑𝑑𝑒𝑒𝑑𝑑𝑑𝑑𝑒𝑒𝑑𝑑

𝑠𝑠𝑜𝑜𝑑𝑑 𝑜𝑜𝑜𝑜 24 ℎ𝑜𝑜𝑜𝑜𝑜𝑜 𝑒𝑒𝑒𝑒𝑒𝑒𝑜𝑜𝑒𝑒𝑒𝑒 𝑑𝑑𝑒𝑒𝑑𝑑𝑑𝑑𝑒𝑒𝑑𝑑
�. This 

process was repeated for the entire year. By multiplying the normalization factor for each hour by the daily 
demand data, the hourly demand for Northern India was estimated. This was the process for the base case, 76F 
cooling point. The other cooling points are relative to the base case. To find the hourly demand data for the 73F 
and 70F cooling points, the formula followed for hour 1 was: 
 

�𝑇𝑇𝑜𝑜𝑇𝑇𝑑𝑑𝑇𝑇 𝐸𝐸𝑒𝑒𝑒𝑒𝑜𝑜𝑒𝑒𝑒𝑒 73𝐹𝐹
𝑇𝑇𝑜𝑜𝑇𝑇𝑑𝑑𝑇𝑇 𝐸𝐸𝑒𝑒𝑒𝑒𝑜𝑜𝑒𝑒𝑒𝑒 76𝐹𝐹

� ∗  𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 1 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 𝑓𝑓𝐻𝐻𝐻𝐻 73 𝐹𝐹 and 

 

�𝑇𝑇𝐻𝐻𝑇𝑇𝐷𝐷𝑇𝑇 𝐸𝐸𝐷𝐷𝐷𝐷𝐻𝐻𝐸𝐸𝐸𝐸 70𝐹𝐹

𝑇𝑇𝐻𝐻𝑇𝑇𝐷𝐷𝑇𝑇 𝐸𝐸𝐷𝐷𝐷𝐷𝐻𝐻𝐸𝐸𝐸𝐸 76𝐹𝐹
� ∗  𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 1 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 𝑓𝑓𝐻𝐻𝐻𝐻 70 𝐹𝐹. 

 
This process was repeated for both cooling points and all 8760 hours in a year. Figure 6 shows the 

shift in demand as the year progresses in the summer months and winter months.  
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Figure 6. Daily power demand of Northern India. We can see the shift in demand as the year progresses in the 
summer months and the winter months. Power demand for a day is shown at intervals of 20 days. 
 

Mixed Integer Linear Programming (MILP) is an optimization method using linear constraints and 
linear objectives. Essentially, MILP finds points on a graph that fit an objective function based on constraints 
created with the inputs of the function. The MILP model used for this project is meant to minimize the emissions 
and costs of the power plants and create a schedule/power output for the power plants to meet the demand also 
known as Unit Commitment and Economic Dispatch. 
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Figure 7. Power dispatch of generators that resulted from the Unit Commitment model. The graph is from Dec 
15th. VPPs can do the same and make real-time decisions when making a power output schedule for hundreds 
of power plants to meet the demand and keep the grid stable. 
 

The Objective Function formula which minimizes the costs/emissions of the power plants is below. 
All of the constraints added are real constraints applied in power plant facilities and allow for realistic results 
that may occur in real-life. 
 

 � � �𝑓𝑓𝑖𝑖 𝑧𝑧𝑖𝑖,ℎ ℎ𝐻𝐻𝑖𝑖   +  .035𝑠𝑠𝐷𝐷𝑖𝑖𝑧𝑧𝑖𝑖,ℎ  +  𝑠𝑠𝑖𝑖𝑣𝑣𝑖𝑖,ℎ + 𝑇𝑇𝑖𝑖𝑤𝑤𝑖𝑖,ℎ�
ℎ𝑜𝑜𝑜𝑜𝑜𝑜 ℎ𝑝𝑝𝑇𝑇𝑑𝑑𝑒𝑒𝑇𝑇 𝑖𝑖

 

 
i - power plant 
h - hour 
f - fuel costs 
z - power generated by a plant 
hr - heat rate 
CO2 emissions tax (.035) - dollar tax amount per kg of CO2 from carbon footprint emissions 
se - source emissions 
s - startup cost 
v -startup the plant (1 if plant i is shut down, 0 otherwise) 
t - shutdown cost 
w - shutdown the plant (1 if plant i is shut down, 0 otherwise) 
m - minimum generations limit 
c - maximum power capacity 
r - ramp rate percentage 
u – plant on or off (1 if plant I is on, 0 otherwise) 
d – energy demand 
U - minimum on time 
D - minimum off time 

 
Constraints seem to be an obvious part of the model, but they need to be coded into the model for the 

results to accommodate a real-life environment. The constraints for the UC model are listed below: 
1. Meet Demand: Make sure that the total power generated by all the power plants in each hour 

is equal to the power demand in that hour. 
 

� 𝑧𝑧𝑖𝑖,ℎ
𝑝𝑝𝑇𝑇𝑑𝑑𝑒𝑒𝑇𝑇 𝑖𝑖

=  𝐷𝐷ℎ 

 
2. Maximum and Minimum Generation Levels: Once a power plant is on, it must produce a 

minimum amount of energy before being turned off for it to be worth the startup. The power plant also cannot 
produce more power than its capacity. 
 

𝑧𝑧𝑖𝑖,ℎ ≤ 𝑐𝑐𝑖𝑖𝐻𝐻𝑖𝑖,ℎ 
𝑧𝑧𝑖𝑖,ℎ ≥ 𝐷𝐷𝑖𝑖𝑐𝑐𝑖𝑖𝐻𝐻𝑖𝑖,ℎ 

 
3. Nuclear power plants are always on: Turning off nuclear power plants is tough as they take a 

long time (upwards to 2 days), therefore they are always on in this model.  
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𝑧𝑧𝑖𝑖,ℎ ≥ 𝐷𝐷𝑖𝑖𝑐𝑐𝑖𝑖 

 
4. Maximum Ramp Rates: Immediate big changes in power generation for power plants is not 

recommended, instead, they are ramped up and down when on.  
 

−𝐻𝐻𝑖𝑖𝑐𝑐𝑖𝑖 ≤ 𝑧𝑧𝑖𝑖,ℎ −  𝑧𝑧𝑖𝑖,ℎ−1 ≤ 𝐻𝐻𝑖𝑖𝑐𝑐𝑖𝑖 
 

5. Link startup/shutdown variables: This restraint gives three outcomes for a power plant, either 
it is on, off, or on and off. There won’t be any overlap in the program. 
 

𝑣𝑣𝑖𝑖,ℎ −  𝑤𝑤𝑖𝑖,ℎ = 𝐻𝐻𝑖𝑖,ℎ − 𝐻𝐻𝑖𝑖,ℎ−1 
 

6. Minimum on and off time: Power plants must stay on for a minimum amount of time before 
being turned on again and vice versa. The variables t in this scenario represents the time when the plant is turned 
on and T is the total time the plant can operate. Plants cannot be turned on or off immediately in succession, 
hence the constraint. 
 

a. Minimum On Time 
 

� 𝐻𝐻𝑖𝑖(𝑇𝑇) −𝐷𝐷𝑚𝑚𝐷𝐷{𝑇𝑇,𝑇𝑇𝑖𝑖𝑈𝑈}
𝑑𝑑𝑖𝑖𝑒𝑒{𝑇𝑇,𝑇𝑇𝑖𝑖𝑈𝑈}

𝑇𝑇=1

=  0 ∀  𝑚𝑚 ∈  𝐺𝐺𝑇𝑇ℎ𝑒𝑒𝑜𝑜𝑑𝑑𝑑𝑑𝑇𝑇  

 

� 𝐻𝐻𝑖𝑖(𝑇𝑇) ≥ 𝑇𝑇𝑖𝑖𝑈𝑈𝑣𝑣𝑖𝑖(𝑇𝑇),𝑇𝑇𝑖𝑖𝑈𝑈
𝑇𝑇+𝑇𝑇𝑖𝑖𝑈𝑈,𝑇𝑇

𝑇𝑇=𝑜𝑜𝑖𝑖,𝑗𝑗

 =  𝐷𝐷𝑚𝑚𝐷𝐷{𝑇𝑇 − 𝑇𝑇 + 1,𝑉𝑉𝑖𝑖𝑈𝑈}  ∀  𝑇𝑇 = 𝐷𝐷𝑚𝑚𝐷𝐷{𝑇𝑇,𝑇𝑇𝑖𝑖𝑈𝑈} + 1, . . . ,𝑇𝑇 

 
b. Minimum Off time 

 

� 𝐻𝐻𝑖𝑖(𝑇𝑇) =  0
𝑑𝑑𝑖𝑖𝑒𝑒{𝑇𝑇,𝑇𝑇𝑖𝑖𝐷𝐷}

𝑇𝑇=1

 ∀  𝑚𝑚 ∈  𝐺𝐺𝑇𝑇ℎ𝑒𝑒𝑜𝑜𝑑𝑑𝑑𝑑𝑇𝑇 , 𝑇𝑇 ∈  𝑇𝑇  

 

𝐻𝐻𝑒𝑒(𝑇𝑇) + � 𝑤𝑤𝑖𝑖(𝑗𝑗) ≤ 1
𝑇𝑇+𝑇𝑇𝑖𝑖𝑈𝑈,𝑇𝑇

𝑗𝑗=𝑑𝑑𝑑𝑑𝑚𝑚{1,𝑇𝑇−𝑉𝑉𝑖𝑖𝐷𝐷}

 ∀  𝑇𝑇 = 𝐷𝐷𝑚𝑚𝐷𝐷{𝑇𝑇,𝑇𝑇𝑒𝑒𝐷𝐷} + 1, . . . ,𝑇𝑇 

 
To minimize the emissions as well, a tax on CO2 emissions is added. The tax is .035 dollars per kilo-

gram of CO2. Effectively, emissions are now part of the objective and are minimized as well. It is easy to see 
the minimized emissions in C02 as it is just multiplied by a constant factor. All the constraints added are real 
constraints applied in power plant facilities and allow for realistic results that may occur in real-life.  

The Machine Learning model is meant to predict the gains in terms of CO2 emissions of having VPP 
assets in the power grid of North India. There is an X matrix which contains features from the MILP model 
such as the hourly demand, nameplate capacity, heat rate, fuel costs, and source emissions, but it also contains 
unused BEOPT data points such as outdoor dry bulb temperature, outdoor dew point, and outdoor humidity 
ratio. The purpose of not adding all the data points is that the machine learning model is much faster than the 
MILP model and so that in a real-life scenario, realistic and attainable data can be used to coordinate resources 
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instead of a lot of tough to find data points like ramp rates for each power plant. The Y matrix contains the 
minimized values obtained from the MILP model such as the minimized system costs and CO2 costs. The Y 
matrix also contains the generation of each source, for example, how much energy was produced from power 
plants fueled by coal. Both X and Y matrices contain data for the months January, May, June, and December 
so that there is an adequate amount of data for the machine learning model to train from (data for each cooling 
point 70F, 73F, 76F) and resemble the entire year. The goal is to see how well the machine learning model can 
predict the data in Y from the data in X. Specifically in this project, the focus is on predicting the CO2 costs as 
the project minimizes the costs and emissions and this variable provides information on both.  

The machine learning model used for predictions was a Random Forest Regressor model as it proved 
to be more accurate than a neural network, a linear regression model, and a gradient boosting regressor model. 
Random forests use a collection of decision trees to make predictions.  
 

Results 
 
There are two sets of results: the minimized results from the MILP model used as the Y matrix in the machine 
learning model and the machine learning model accuracy.  
 

 
 
Figure 8. In the partial table above, the results from the MILP model are shown with the optimized values for 
the costs and the power plant generation for each type of fuel.  
 

Coal and Hydro generation is likely the highest in terms of power generation as most power plants in 
India are coal and hydro powered. The same idea applies for biomass as there is only one biomass plant in 
northern India, making it the lowest source generation. Nuclear power plants' values are likely the same because 
they follow special conditions of always being turned on, therefore there is no difference between their produc-
tion compared to a coal power plant that may be on at different times as other coal plants.  
 
Table 1. In the first code segment, we see a 98.89% accuracy at a 70F cooling point. In the second code segment, 
we see a 97.76% accuracy at a 73F cooing point. In the third code segment, we see a 87.67% accuracy at a 76F 
cooling point 
 

 Model Accuracy 

Cooling Point: 70F 98.89% 

Cooling Point: 73F 97.76% 
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Cooling Point: 76F 87.67% 

 
The model uses a standard process of using 20% of data for testing and the other 80% for training. The 

machine learning model provided high accuracies for all three cooling points, however there is a dip in accuracy 
at 76F compared to 73F and 70F. This could be due to a variety of reasons. One of them could be that the 
BEOPT tool didn’t provide accurate enough data for the model to predict the minimized emissions/costs, or 
another could be that the MILP model gave an irregular optimization compared to the other cooling points and 
didn’t match the same pattern of data as well. However, the accuracy is still relatively high based on the amount 
of data fed to the machine learning model, and it will increase with more and more data.  
 

Conclusion and Future Work 
 
From our results, a Virtual Power Plant (VPP) is a valid technology that can be applied in northern India, and 
in the future, across the entire country or even the world. The machine learning model has a high accuracy for 
all 3 cooling points and is exceptionally good for 70F and 73F. A VPP can make real-time decisions from 
collecting recent data from just days before, providing a better measure for reducing emissions and costs.  It 
can aggregate and redistribute resources most effectively from there. In the future, additional factors can be 
added to the model to get a more accurate minimization. Operating costs such as labor or health costs could be 
factored into the model in the future. Data specific to each power plant could be obtained to get completely 
accurate numbers instead of randomizations of ranges for specific fuel types. Lastly, more data will make the 
machine learning model more and more accurate until it reaches perfection. This type of model in the future 
can be applied to countries all around the world, improving quality of life in third-world countries all the way 
to the number 1 ranked economy. 

Pollution is slowly eating away at the planet and this is only a minor stepping stone of many tasks that 
need to be done to heal our world. 
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