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ABSTRACT 
 
Time series analysis, the process of learning patterns in time series data and making future predictions, is a 
challenging machine learning endeavor: the intricate and error-prone process of manual data fitting limits effi-
ciency and scalability to larger datasets. Our research builds upon structure discovery research, paving the way 
for more effective short-term forecasting. We combine the adaptability of automatic change point detection 
with a fixed kernel composition, achieving accuracy comparable to traditional manual methods while reducing 
analysis time. This hybrid approach offers the best of both worlds: leveraging human expertise for precise fitting 
and capturing specific trends while utilizing an automated technique to recognize shifts and model complex 
relationships within the data dynamically. By demonstrating the effectiveness of automatic change point detec-
tion in conjunction with kernel composition, we work to develop time series usage in data analysis. 
 

Introduction 
 
Time series challenges, seen in fields like finance and global weather predictions, require a solid grasp of struc-
ture in data for effective forecasting (Hyndman & Athanasopoulos, 2013) due to significant and sporadic vari-
ations that do not happen consistently compared to other types of data. Traditionally, understanding these struc-
tures involved complex and error-prone bespoke data science, relying on manual data fitting (Wang et al., 2022). 
Manual forecasting, relying on human expertise, is a longstanding method for predicting trends but has draw-
backs due to its subjective nature and time-intensive process (Armstrong, 2001). To address the need for simpler 
and automated approaches, researchers developed methods to streamline this process. Such methods include 
the fully automatic fixed kernel composition method, which models the data without having to input kernels to 
use, but takes up more computational resources to provide a more accurate result (Corani et al., 2021). 

Automating the kernel selection process can make time series forecasting more powerful and accessi-
ble to data scientists and software engineers (Corani et al., 2021). In our study, we propose a new method by 
combining automatic change point detection with a Gaussian Process with a composite kernel from (Corani et 
al., 2021). This approach competes effectively with manual methods and fully automatic forecasting, providing 
accuracy and potential time savings in scenarios like modelling sales data that can fluctuate on a near-daily 
basis or sensor-provided data, which would have uneven patterns depending on what is being measured (Hynd-
man & Athanasopoulos, 2013). Our research marks progress in making time series analysis more accessible 
and efficient, offering insights for researchers in this complex field. 

Specifically, our exploration involves combining Gaussian Processes (GPs) with change point detec-
tion methods and assessing their performance against manual forecasting and fixed kernel composition (FKC) 
baselines. GPs are adept at handling uncertain or noisy data, providing valuable predictions where confidence 
is crucial (Rasmussen, 2006). Kernel selection allows for precise fitting, capturing specific trends, and modeling 
complex relationships. Choosing suitable kernels and determining the similarity between data points is crucial 
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for constructing effective GP models (Rasmussen, 2006). By combining a fixed kernel composition with change 
point detection, our newest model excels at identifying specific points in a time series where significant statis-
tical changes occur (Burg & Williams, 2020). Unlike using only an FKC, modeling change points dynamically 
recognizes shifts in trends, improving overall model fit (Burg & Williams, 2020). We show on the Kaggle M4 
and M5 forecasting competitions that for comparable run times, our automatic model is competitive with man-
ual methods with improved performance (“Kaggle Competitions,” n.d.). 
 

Gaussian Processes for Time Series 
 
A time series problem involves predicting future values of a variable based on its past observations, where each 
observation is recorded at discrete time steps. 

Time series data can be represented as follows: 
 

𝑋𝑋 = (𝑥𝑥1, . . . , 𝑥𝑥𝑛𝑛) 
𝑌𝑌 = (𝑦𝑦1, . . . , 𝑦𝑦𝑛𝑛) 

 
where 𝑥𝑥𝑖𝑖 represents the observation at time step 𝑖𝑖 in the input sequence, and 𝑦𝑦𝑖𝑖 represents the corre-

sponding output. The forecasting problem involves predicting future values 𝑦𝑦𝑛𝑛+ℎ which involves computing: 
 

𝑝𝑝(𝑦𝑦𝑛𝑛+1, . . . , 𝑦𝑦𝑛𝑛+ℎ|𝑦𝑦1, … , 𝑦𝑦𝑛𝑛) 
 
Gaussian Process 
 
A GP is a set of random variables such that the joint distribution of any finite subset of these variables follows 
a Gaussian distribution. We can think of a GP as a distribution over functions, where our goal is to learn a 
posterior over all possible functions that can explain the data (Carl Edward Rasmussen, 2005). A GP is fully 
defined by a mean and covariance function, the latter of which is referred to as a kernel. 

The mean function in GPs can take various forms. A commonly used choice, and the one used in our 
research, is a constant 𝜇𝜇(𝑥𝑥) = 𝜇̂𝜇. When fitting a GP model to data, 𝜇̂𝜇 is often estimated using the available data. 
For other works, beyond using a constant for the mean, a more general mean function 𝜇𝜇(𝑥𝑥) of a Gaussian 
process is given by the expected value of the process at a specific point x (Carl Edward Rasmussen, 2005): 
 

𝜇𝜇(𝑥𝑥) = 𝔼𝔼[𝑓𝑓(𝑥𝑥)] 
 

We use a constant mean function in our paper, and rely on the kernels described below to capture the 
data patterns. 
 
Covariance Functions 
 
The kernel determines the strength of the correlation between points (Carl Edward Rasmussen, 2005) . Mathe-
matically, the covariance function 𝑘𝑘(𝑥𝑥, 𝑥𝑥′) is defined as the expected value of the product of the differences 
between the target values and their respective mean values: 
 

𝑘𝑘(𝑥𝑥, 𝑥𝑥′) = 𝔼𝔼[(𝑓𝑓(𝑥𝑥) − 𝜇𝜇(𝑥𝑥))(𝑓𝑓(𝑥𝑥′) − 𝜇𝜇(𝑥𝑥′))] 
 

where the variables 𝑥𝑥 and 𝑥𝑥′ represent input data points in our context, 𝑓𝑓(𝑥𝑥) and 𝑓𝑓(𝑥𝑥′) are the function 
values at those points, and 𝜇𝜇(𝑥𝑥) and 𝜇𝜇(𝑥𝑥′) are the mean values of the function at those points. 
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Kernel selection and discovery is an open area of research. The most common kernel is the RBF kernel, 
also known as the squared exponential kernel: 
 

𝐾𝐾RBF(𝑥𝑥, 𝑥𝑥′) = exp�−
∥ 𝑥𝑥 − 𝑥𝑥′ ∥2

2𝑙𝑙2
� 

 
This kernel is effective for modeling non-linear trends, which computes the distance between pairs of 

data points in a feature space. The lengthscale parameter 𝑙𝑙 in equation [rbfkerneleq] determines how relevant a 
feature (parameter) is for the learned function, which is visually represented by the smoothness of the functions. 
Higher lengthscale will yield smoother functions, while lower lengthscale yields rougher functions. It is worth 
noting that a shorter lengthscale in Gaussian processes increases sensitivity to local variations in the training 
data, raising the risk of overfitting (fitting too precisely to one dataset and performing poorly on other datasets) 
by capturing noise rather than underlying patterns, which can result in poor performance on new, unseen data. 

The Matérn kernel, which is interestingly the generalization of the RBF kernel although it appears less 
frequently, is: 
 

𝐾𝐾Matern(𝑥𝑥, 𝑥𝑥′) =
21−𝜈𝜈

𝛤𝛤(𝜈𝜈)
�
√2𝜈𝜈 ∥ 𝑥𝑥 − 𝑥𝑥′ ∥

𝑙𝑙
�
𝜈𝜈

𝐾𝐾𝜈𝜈 �
√2𝜈𝜈 ∥ 𝑥𝑥 − 𝑥𝑥′ ∥

𝑙𝑙
� 

 
This kernel has an additional parameter 𝜈𝜈, which controls the smoothness of the function. The smaller 

𝜈𝜈 is, the less smooth the function is. As 𝜈𝜈 → ∞, the kernel becomes equivalent to the RBF kernel. In contrast, 
the lengthscale parameter 𝑙𝑙 primarily governs the scale of variations, with smaller values capturing finer details 
and larger values promoting smoother behavior. 

A linear kernel, a simpler kernel that captures linear trends, is: 
 

𝐾𝐾Linear(𝑥𝑥, 𝑥𝑥′) = 𝑥𝑥𝑇𝑇𝑥𝑥′ 
 

It is best used to capture linear relationships between data points but is ineffective when dealing with 
non-linear ones due to not having a lengthscale parameter. 
Another common kernel is the Periodic (PER kernel): 
 

𝐾𝐾Periodic(𝑥𝑥, 𝑥𝑥′) = exp�−
2sin2(𝜋𝜋 ∥ 𝑥𝑥 − 𝑥𝑥′ ∥/𝑝𝑝)

𝑙𝑙2
� 

 
Most time series often consist of periodic patterns, whether daily, monthly, or annually, and a periodic 

kernel can capture the repeated trends within the data. The lengthscale parameter 𝑙𝑙 here operates similarly to 
the lengthscale parameter in the RBF kernel, where a longer lengthscale decreases the local variance within 
repetition and captures less detail. 

The Rational Quadratic (RQ) kernel is defined as: 
 

𝐾𝐾RQ(𝑥𝑥, 𝑥𝑥′) = �1 +
∥ 𝑥𝑥 − 𝑥𝑥′ ∥2

2𝛼𝛼𝑙𝑙2
�
−𝛼𝛼

 

 
This kernel can be interpreted as an infinite number of different RBF kernels with different 

lengthscales added together. This makes it suitable for dealing with complex data sets that don’t have a simple 
pattern. The lengthscale parameter here controls the spread of the covariance. It has a positive correlation, while 
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the scale-mixture manipulates the number of local variations, increasing the scale-mixture and reducing local 
variations. 

The Spectral Mixture (SM) kernel is: 
 

𝐾𝐾SM(𝑥𝑥, 𝑥𝑥′) = �𝑤𝑤𝑘𝑘

𝐾𝐾

𝑘𝑘=1

cos(2𝜋𝜋𝑓𝑓𝑘𝑘 ∥ 𝑥𝑥 − 𝑥𝑥′ ∥ +𝜙𝜙𝑘𝑘)exp(−2𝜋𝜋2𝑓𝑓𝑘𝑘2𝑙𝑙2 ∥ 𝑥𝑥 − 𝑥𝑥′ ∥2) 

 
where 
1. 𝐾𝐾: Number of mixture components. 
2. 𝑤𝑤𝑘𝑘: Weight associated with the 𝑘𝑘-th component. 
3. 𝑓𝑓𝑘𝑘: Frequency of the 𝑘𝑘-th component. 
4. 𝜙𝜙𝑘𝑘: Phase of the 𝑘𝑘-th component. 
5. 𝑙𝑙: Lengthscale parameter governing the scale of variations. 
6. ∥ 𝑥𝑥 − 𝑥𝑥′ ∥: Euclidean distance between input data points 𝑥𝑥 and 𝑥𝑥′. 

 
This kernel is powerful because it learns all the frequencies in the data by learning the spectral density. 

The spectral density indicates the probability density of the corresponding kernel or how likely each frequency 
is in the data. Hence, the SM kernel can capture extremely complex patterns. 
 

               
 
Figure1. Functions that GP kernels model. 
 

Models 
 
Manual Forecasting 
 
We refer to "manual forecasting" as the trial and error process of fitting a model (in our case a GP kernel) to 
data. In this approach, researchers carefully analyze the data to discern trends and try suitable kernels. The 
process of kernel composition then takes place, involving the addition or multiplication of kernels to construct 
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a model capable of capturing a diverse range of patterns. This is particularly advantageous when dealing with 
data exhibiting complex functions. 

Similar to architecture search in deep learning, the resulting fit is a local optima conditioned on the 
quality of the kernels the modeler selects. It is still the predominant method of fitting short term time series 
since researchers can make minute adjustments at every step of the modeling process. Unlike automated meth-
ods, researchers may possess information not present in the data, enabling them to make more comprehensive 
predictions. Though time-consuming, their unique understanding of the data may yield unexpected outcomes 
that automated predictions cannot replicate. 
 
Fixed Kernel Composition 
 
Fixed kernel composition (FKC) uses a single fixed kernel for all problems of a certain characteristic, such as 
time series data. Instead of manually selecting and adjusting kernels to construct forecasting models, we use a 
single fixed kernel for all the data sets as in (Corani et al., 2021). The biggest change is removing the PER 
kernel where no seasonal pattern was observed in the M4 data. 

KM4 = RBF + SM1 + SM2
KM5 = RBF + SM1 + SM2 + PER 

 
Corani et al. also adopted a hierarchical Bayesian perspective to FKC, treating the hyperparameters of 

each kernel as random variables and learning a distribution for each one. This allowed them to quantify the 
uncertainty associated with the hyperparameter and potentially improve the model’s robustness to overfitting. 
Instead, we employ maximum likelihood estimation (MLE) to learn a single point estimate of the hyperparam-
eter that best explains the observed data. While this method doesn’t explicitly account for uncertainty, it is 
computationally efficient and performed sufficiently well, particularly with the larger datasets we used. Fixed 
kernel composition may lack the depth of human insights and domain-specific knowledge present in manual 
forecasting, potentially limiting accuracy. Finally, relying solely on statistical measures in automation, such as 
training a machine learning model exclusively on historical data, can lead to overfitting. For instance, a stock 
prediction model may become too tailored to past trends, limiting its adaptability to new market conditions. 
 
Change Point Detection 
 
Change point detection is a method used to identify points in a time series where abrupt and significant varia-
tions have occurred . We use binary segmentation as described below for change points and then fit RBF kernels 
on each window of data split by the changepoints. 
 

𝐾𝐾input_change(𝑥𝑥1, 𝑥𝑥2; {𝜆𝜆, 𝜎𝜎1, 𝜎𝜎2}) = 𝜆𝜆2exp�−
1

2𝜎𝜎22
|𝑥𝑥1 − 𝑥𝑥2|� , for 𝑥𝑥1 ≥ change point 

 
where: 

 
𝜆𝜆 :Scaling parameter, it scales the overall magnitude of the kernel.
𝜎𝜎2 :Width parameter, controls how quickly the kernel decreases with distance. 

 
Since the change points separate time series into segments with similar characteristics, it can more 

accurately and precisely capture the trend and use it to forecast future events. This becomes especially practical 
in real-world applications where data are constantly affected by external factors that lead to abrupt changes 
within the dataset. Change points also segment data into different periods by characteristics, giving researchers 
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deeper insights into understanding the properties and behaviors of each segment, potentially allowing busi-
nesses to make better decisions. 

Our model demonstrates novelty by combining change point detection with fixed kernel composition. 
Specifically, we have incorporated change point detection using binary segmentation into a GP regression 
model with change point kernels constructed from 3 RBF kernels. Here, each RBF model captures a different 
trend, increasing the flexibility and trend-capturing ability of the model. 
 
Binary Segmentation 
We use a greedy binary segmentation method to identify points in a sequence of data where a significant change 
or "break" occurs, which is the change point. After detecting a change point within the entire time series, the 
time series is split into two parts around this change point. Then, the detection process is repeated on the two 
resulting segmented time series. This process is repeated until no further change point is detected  

The initial change point, denoted as 𝑡̂𝑡(1), is given by: 
 

𝑡̂𝑡(1) : = arg min
1≤𝑡𝑡<𝑇𝑇−1

[𝑐𝑐(𝑦𝑦0..𝑡𝑡) + 𝑐𝑐(𝑦𝑦𝑡𝑡..𝑇𝑇)] 
 

where 𝑐𝑐(⋅) is the cost function. This operation is "greedy," searching for the change point that mini-
mizes the sum of costs the most. The signal is then split into two at the position of 𝑡̂𝑡(1). This process is repeated 
on the resulting sub-signals until a stopping criterion is met. The algorithm stops when further partitioning of 
the data ceases to yield a substantial reduction in the total cost. The algorithm’s efficiency is of the order 
𝑂𝑂(𝑇𝑇log𝑇𝑇). 
 

Experiments 
 
The datasets we have chosen for this experiment are snippets of data from the M4 (Makridakis et al., 2020) and 
M5 (Makridakis et al., 2022) datasets, which are datasets used in the series of the Makridakis competition that 
evaluate and compare different forecasting methods. We select 1871 time series in the M4 dataset with 1853 
data points for training and 18 data points for testing, and 1000 time series in the M5 dataset with the first 900 
data points for training and the last 100 data points for testing. We applied 3 different forecasting approaches 
to both datasets: manual kernel construction, fixed kernel composition, and change point detection. The first 
two approaches are the baselines, while we are particularly interested in the results of the change point detection 
approach. We used GPytorch (Gardner et al., 2018) and the autoforecasting library (Chen et al., n.d.) with the 
following manual kernels to implement and run the experiments. 
 

KM4 = RBF × PER + RQ
KM5 = RBF × PER + MAT 
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Figure2. BinSeg Algorithm 
 

Multiplying the RBF and Periodic kernels and adding the result to the RQ kernel creates a composite 
kernel structure. This combination allows the model to capture long-term and periodic patterns in the data 
through the RBF-Periodic component while accounting for more complex and irregular relationships with the 
RQ component. This combination is advantageous because it provides a flexible way to model data that exhibits 
both smooth long-term trends and periodic behavior and enhances the model’s robustness to noisy data and 
irregularities in the data, using the detailed set of kernels in the specific combination, the GP model was trained 
with about 98-99 percent of the selected M4 row, and the rest of the data was used for testing, with 1000 
iterations of training being used for the model. 
 
Metrics 
 
Mean Absolute Error (MAE) is a metric commonly used to evaluate the accuracy of predictive models, partic-
ularly in regression problems. It measures the average absolute difference between the predicted values (𝑦𝑦�𝑡𝑡) 
and the true values (𝑦𝑦𝑡𝑡) as follows: 
 

𝑀𝑀𝑀𝑀𝑀𝑀 =
1
𝑇𝑇
�|
𝑇𝑇

𝑡𝑡=1

𝑦𝑦𝑡𝑡 − 𝑦𝑦�𝑡𝑡| 

 
Here, 𝑇𝑇 represents the number of data points or time instances in the test set. A lower MAE indicates 

a better fit of the model of the data, as it quantifies the average magnitude of errors between predictions and 
actual values. 

Continuous-Ranked Probability Score (CRPS) is a metric used to assess the accuracy of probabilistic 
forecasts, such as predictive distribution functions. It compares these probabilistic forecasts with the observed 
data. CRPS is defined as follows: 
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𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝐹𝐹𝑡𝑡, 𝑦𝑦𝑡𝑡) = −� �𝐹𝐹𝑡𝑡(𝑧𝑧) − 𝟏𝟏𝑧𝑧≥𝑦𝑦𝑡𝑡�
2∞

−∞
 𝑑𝑑𝑑𝑑 

 
Here, 𝐹𝐹𝑡𝑡(𝑧𝑧) represents the cumulative predictive distribution function at time 𝑡𝑡, and 𝑦𝑦𝑡𝑡 is the observed 

target value at time 𝑡𝑡. The indicator function 𝟏𝟏𝑧𝑧≥𝑦𝑦𝑡𝑡 is 1 for 𝑧𝑧 ≥ 𝑦𝑦𝑡𝑡 and 0 otherwise. A lower CRPS value indi-
cates a better fit of the probabilistic forecast to the actual observations. 
Log-likelihood (LL) is a measure used to evaluate how well a statistical model describes the observed data, 
particularly in the context of models providing probabilistic predictions. The LL for a test set is defined as 
follows: 
 

𝐿𝐿𝐿𝐿 =
1
𝑇𝑇
�−

1
2
� log
𝑇𝑇

𝑡𝑡=1

(2𝜋𝜋𝜎𝜎𝑡𝑡2) −
1

2𝜎𝜎𝑡𝑡2
�(
𝑇𝑇

𝑡𝑡=1

𝑦𝑦𝑡𝑡 − 𝑦𝑦�𝑡𝑡)2� 

 
Here, 𝑇𝑇 is the number of data points in the test set, 𝜎𝜎𝑡𝑡2 represents the variance of the predictive distri-

bution at time 𝑡𝑡, 𝑦𝑦𝑡𝑡 is the observed value, and 𝑦𝑦�𝑡𝑡 is the predicted value. A higher LL indicates a better match 
between the model’s predictions and the observed data, as it represents the likelihood. 

Our study employed three distinct forecasting methods—manual forecasting, FKC, and change 
point—on randomly selected time series from the M4 and M5 datasets. Each method was for 1,000 iterations, 
utilizing 90% of the data, and 10% withheld for test. We measured MAE, CRPS, LL, and CPU run times aver-
aged over five runs. 
 

Results 
 
Analyzing the change point model’s performance on the M4 dataset reveals the model’s observations. The 
model’s confidence bounds are larger than the manual model’s and FKC’s. Yet, they encapsulate the dataset’s 
dynamics without succumbing to the overfitting of the dataset seen with the FKC model. This suggests flexi-
bility in the model’s representation of general trends and avoids an overly close adherence to noise or outliers. 

Examining the shape of the confidence bounds and their alignment with the test mean (3) indicates 
that the model adeptly reflects the underlying structure of the M4 data. This ability to capture data dynamics 
without overfitting distinguishes the model from FKC counterparts, which might tend to closely follow training 
data at the risk of losing generalization. Regarding test data predictions, the model follows the overall trend of 
the M4 data but falls short in capturing a final small upward trend present in the actual training data. This 
discrepancy is reflected in an increasing variance between the predicted test mean and the real test data, high-
lighting a limitation in the model’s ability to forecast subtle shifts in data and make better general trend predic-
tions. 
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Figure3. This is the overview of the M4 dataset that analyzes anonymous monthly sales figures, showing train-
ing and testing means calculated by all three models, along with the data used for training and testing, and the 
confidence bounds of each model. 
 

 
 
Figure4. This is the testing portion of the M4 dataset, showing the testing means calculated for each model, 
along with the test data, and the confidence bounds for each model. 
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Table1. M4 Numerical Results 
 

 Manual FKC FKC + CP 
MAE 𝟎𝟎. 𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎

± 𝟎𝟎. 𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎 
0.412 ± 0.0115 0.1563 ± 0.0295 

CRPS 0.084 ± 0.0051 0.3124 ± 0.0105 𝟎𝟎. 𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎 ± 𝟎𝟎. 𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎 
NLL 𝟎𝟎. 𝟐𝟐𝟐𝟐𝟐𝟐𝟐𝟐

± 𝟎𝟎. 𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎 
0.7544 ± 0.0090 0.3142 ± 0.0221 

Average CPU Time Per Iteration 𝟕𝟕. 𝟑𝟑𝟑𝟑 ± 𝟎𝟎. 𝟑𝟑𝟑𝟑 25.65 ± 0.94 8.71 ± 0.84 
 

A noteworthy aspect of the change point model’s behavior is its handling of outliers. Instead of be-
coming confused or overcompensating for these anomalies, the model strategically uses them. Outliers are in-
corporated to subtly adjust the training mean, guiding it towards a more comprehensive fit that considers the 
entire dataset, including outliers. This approach indicates adaptability without succumbing to the influence of 
outliers that might lead to overfitting. 

In contrast to the M4 dataset, the Change-Point detection model encountered challenges when applied 
to the more periodic M5 dataset. The periodic patterns inherent in M5 seemed to elude the model, highlighting 
its inability to discern and adapt to the intricacies of such cyclical variations (4). This contrast is noteworthy as 
the less periodic M4 dataset showcased a more favorable performance in analyzing specific trends of at least 
parts of the data. 

One discernible observation was the model’s efficacy in capturing the general trend in transitioning 
from the training to the test phase in the M5 dataset (5). This ability to grasp overarching trends indicates a 
certain level of adaptability in understanding the broader patterns within the data. However, this proficiency 
came at the cost of neglecting the finer periodic trends that characterize the M5 dataset. 

A difference emerged when comparing the confidence bounds between the M4 and M5 results. The 
M5 dataset exhibited smaller confidence bounds, indicative of a more conservative approach in the model’s 
predictions or better confidence in its model’s training and testing means. This conservatism could be attributed 
to the model’s inclination towards generalizing the data patterns at the expense of accommodating the pro-
nounced periodicity in the M5 dataset. 

Further scrutiny of the M5 data revealed variations aligning with relative outliers, particularly at the 
maxima or minima of the apparent "periods" in the dataset. These variations might correspond to critical points 
in the periodic cycles. The Change-Point detection model, however, seemed to overlook periodic nuances, em-
phasizing a tendency toward a more generalized representation of the data, both for the M4 and M5 dataset 
results. 
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Figure5. This is the overview of one of the rows of the M5 dataset of sales data from a store in California. The 
figures shows the training (blue) and testing (red) means along with the confidence bounds of the models.  
 

 
 
Figure6. This is the testing portion of the M5 dataset, showing the testing means calculated by each model, 
along with the test data and the confidence bounds of each model 
 

In our comprehensive analysis of three distinct models applied to both the M4 and M5 datasets, we 
reviewed their numerical results across four crucial measurement factors of MAE, CRPS, LL (or negative-LL), 
and CPU time. The models in focus were the manual-fitting mode, the FKC model, and the change point model. 

Beginning with the M4 dataset, the manual-fitting model demonstrated superior performance by 
achieving the best mean and standard deviation combination across the MAE, LL, and CPU run time metrics. 
However, regarding the CRPS result, the change point model outperformed the others. Notably, change point 
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consistently secured the second position across all other c, approaching the performance of the best model in 
each metric. 

These findings suggest that the manual forecasting model, particularly the variant selected through a 
meticulous process involving specific kernels, was well optimized for the M4 dataset. Simultaneously, the con-
sistently strong performance of change point across all metrics implies that, for datasets characterized by fewer 
periodic trends and more extended-scale patterns, change point emerges as an optimal model. This is especially 
true when considering the time investment required for designing and implementing a custom-made manual-
fitting model, which demands substantial development efforts. 
 
Table2. M5 Numerical Results 
 

 Manual FKC FKC + CP 
MAE 0.6186 ± 0.0256 𝟎𝟎. 𝟓𝟓𝟓𝟓𝟓𝟓𝟓𝟓 ± 𝟎𝟎. 𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎 0.5976 ± 0.0393 
CRPS 0.419 ± 0.00587 𝟎𝟎. 𝟒𝟒𝟒𝟒𝟒𝟒𝟒𝟒 ± 𝟎𝟎. 𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎 0.4232 ± 0.0165 
NLL 1.2588 ± 0.00594 0.9872 ± 0.04 𝟎𝟎. 𝟗𝟗𝟗𝟗𝟗𝟗𝟗𝟗 ± 𝟎𝟎. 𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎 

Average CPU Time Per Iteration 𝟐𝟐. 𝟎𝟎𝟎𝟎 ± 𝟏𝟏. 𝟎𝟎𝟎𝟎 3.36 ± 1.20 2.45 ± 0.07 
 

Turning our attention to the M5 dataset, a different pattern emerges. FKC takes the lead in terms of 
MAE and CRPS (comparing mean and standard deviations once again), showcasing its effectiveness in captur-
ing the complexities of the dataset. Change point excels for the Negative Log Likelihood. Unsurprisingly, man-
ual forecasting outshines the others regarding CPU time, as less computational work is needed. In this dataset, 
FKC is the most successful, closely followed by change point, while manual forecasting lags noticeably behind. 

These results highlight the strength of FKC, despite its relatively slower run time due to its fully auto-
mated modeling system. Its ability to yield the best results in the periodic M5 dataset, characterized by numer-
ous localized and general pattern shifts, underscores its effectiveness. Change point, with its adept performance, 
secures the second position, particularly given the dataset’s periodicity and evident general patterns in the data. 
Finally, despite exhaustive efforts and kernel combinations, manual forecasting falls short of replicating the 
high-performing results achieved in the M4 dataset when applied to the M5 dataset. 

Ultimately, change point emerges as a robust performer when confronted with broader data parameters 
and certain periodic trends. On the other hand, FKC maintains consistent good performance across diverse data 
types especially for more periodic data, albeit at the cost of extended run times for FKC models. The manual 
forecasting approach introduces an element of user-dependent variability. However, in our specific case, we 
successfully created manual forecasting models that, at the very least, matched the performance levels exhibited 
by both the FKC and change point models.  

Our experiments generally ran successfully in the M4 dataset, while exhibiting errors and flaws in the 
M5 dataset. For example, the confidence bounds demonstrated the same periodic trend in fixed kernel compo-
sition, hence producing a questionable forecast. This may be caused by noisy data in conjunction with a subop-
timal kernel composition and inadequate training of hyperparameters. Then, this leads to an inaccurate kernel 
composition that cannot precisely capture the trend and results in erroneous confidence bounds. The time series 
selected here are visibly noisy and appear abundant amount of outliers, which may disrupt the data’s preexisting 
pattern, hindering the model’s performance to capture the underlying trend. This may indicate insufficient and 
ineffective data preprocessing before we use them for training, especially in removing outliers and adjusting 
noise levels. 
 

Related Work 
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Attempts at creating kernel compositions for GPs are not new. For time series problems, Corani et al. used the 
fixed kernel composition we compared with but emphasized the use of hierarchical priors for the hyperparam-
eters. For the class of problems they benchmark against, they show that performance improves with this setup. 

Structure discovery with GPs has been an active research area over the last decade (Duvenaud et al., 
2013), (Mansinghka, 2023). (Duvenaud et al., 2013) uses a greedy search algorithm, while (Mansinghka, 2023) 
introduced a new structure learning algorithm based on sequential Monte Carlo sampling. 

Change point detection for time series is also an active area of research (Bosc et al., 2003) has already 
implemented change point detection for the automatic analysis of subtle changes within MRI scans, and it turns 
out to be much less error-prone than a manual approach by experts. (Dehning et al., 2020)  used change point 
detection to infer the effectiveness of government interventions in COVID-19 by evaluating the forecasted 
value with the actual reported data. More recently, (Smejkalová et al., 2023) adopted change point detection to 
analyze many short time series in waste management.  
 

Conclusion 
 
We compared change point detection and composite kernels with manually selected kernels and showed com-
petitive results in terms of accuracy and runtime on 2 open-source time series data. As a relatively new model, 
change point detection already demonstrates its practical use in automatic time series forecasting and displays 
potential for future development. Future directions could include more robust detection of longer periods of 
change windows and developing benchmark datasets for fairer and more objective experiments with change 
point detection in forecasting. 
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