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ABSTRACT 
 
Pathology is a digital technology for the capture and analysis of high-resolution Whole Slide Images (WSIs). 
WSI entails scanning glass pathology slides, typically containing tissue samples, into a digital format. This 
facilitates comprehensive digital viewing, analysis, and interpretation by pathologists. Despite the undeniable 
utility of this method, the inherent time-consuming and labor-intensive nature of traditional pathology image 
analysis, which is heavily reliant on expert pathologists, is well-known. Recent years have seen a surge in 
research aiming to address these challenges through the development of automated systems using machine 
learning approaches. While promising, such systems often exhibit bias towards specific datasets and struggle 
to transition effectively to real-world scenarios. For this reason, there is a need to establish a uniform machine 
learning training approach for generating more robust and consistent results. In this paper, I introduce a 
contrastive learning-based multi-task whole slide image classification system. The proposed system excels at 
extracting consistently reliable features for identical cancer categories, thereby enhancing accuracy in 
downstream tasks. Through extensive experiments, the results demonstrate that the proposed system 
outperforms pre-existing state-of-the-art machine learning models. I expect that the proposed system can 
significantly contribute to pathologists by offering valuable cancer screening capabilities in WSIs. 
 

Introduction 
 
Pathology has witnessed a revolutionary shift with the adoption of Whole Slide Imaging (WSI). This innovative 
technology involves the digitization of traditional glass pathology slides which enables pathologists to engage 
in comprehensive digital analysis of tissue samples. Despite the benefits of WSIs, the traditional pathology 
process is a time-consuming and labor-intensive endeavor, as pathologists manually analyze WSIs. This 
reliance on subjective visual inspection poses challenges which hinders the efficiency of pathology workflows. 
 In response to the inherent limitations of traditional methods, recent years have seen the emergence of 
machine learning-based techniques designed to automate and expedite pathology image analysis. These 
approaches hold the promise of alleviating the burdensome nature of manual assessments and improving 
diagnostic accuracy. However, a critical challenge emerges in the application of these machine learning models 
to real-world scenarios. Many existing techniques exhibit a propensity to be biased towards specific training 
datasets. This limitation poses a significant barrier to the seamless integration of machine learning solutions 
into the real-world.  

In this research paper, I propose a solution to tackle the bias issue in machine learning-based pathology 
image analysis. I introduce a novel contrastive learning-based multi-task WSI analysis system. The proposed 
system aims to not only enhance the efficiency and accuracy of pathology image analysis but also ensure its 
applicability in diverse and real-world clinical settings.  
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The subsequent chapters are structured as follows: Chapter 2 provides background knowledge essential 
for a comprehensive understanding of the proposed approach. In Chapter 3, every detail of the proposed system 
is elaborated upon, with comprehensive experimental results presented and analyzed in Chapter 4. The 
concluding insights are summarized in Chapter 5. 
 
 
 
 

Related Work 
 
Image Classification 
 
Image classification is a task in computer vision and machine learning which aims to train a model to categorize 
images or objects into predefined classes or labels. The goal is to enable the system to automatically recognize 
and assign a label to a given image based on its visual content. Convolutional neural networks are commonly 
used for image classification due to their ability to automatically learn hierarchical features from images. They 
consist of convolutional layers that capture spatial hierarchies and pooling layers for feature reduction. 
 

 
 
Figure 1. Example of object classification (Bansal 2023) 
 

Due to the success of convolutional neural network-based image classification, its application in 
analyzing Whole Slide Images (WSI) in pathology has experienced rapid growth. These models effectively 
learn to discern visual patterns indicative of specific cancer types within WSI, yielding promising results for 
the detection of cancer cells across diverse human organs. Further details on this topic will be elaborated in the 
subsequent section, Chapter 2.1. 
 
Whole Slide Images 
 
Whole Slide Images (WSIs), also known as digital slides, refer to high-resolution digital representations of 
entire pathology slides. Traditional pathology involves the examination of tissue samples under a microscope, 
but with WSI, the entire slide is scanned and digitized. This digital transformation allows pathologists to view 
and analyze the entire specimen at varying magnifications on a computer screen, offering several advantages 
over conventional microscopy. 
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Figure 2. Example of WSI classification (Yang et al. 2021) 
 

Classification system for categorizing types of lung cancer (Yang et al., 2021). Similarly, Sun et al. 
presented a cancer type classification system for the liver using a similar approach (Sun et al., 2019). Kuntz et 
al. developed a machine learning model specifically for the classification and prognostication of gastrointestinal 
cancer (Kuntz et al., 2021). While these methods have demonstrated promising results, a notable limitation lies 
in their pronounced bias toward specific datasets, rendering them less applicable to real-world scenarios. 
Therefore, there is a need to study and develop an uniform training approach to enhance the generalizability of 
trained models. 
 In this research, to solve this problem, I introduce a novel contrastive learning-based cancer type 
classification system. The detailed information of the proposed approach will be explained in Chapter 3. 
 

Proposed Method 
 
The proposed method comprises two distinct training phases. The initial phase focuses on representation 
learning which aims to train the feature extraction process to extract consistent features from diverse cancer 
images. In the second phase, this trained feature extractor is leveraged through transfer learning to enhance the 
efficiency and accuracy of downstream tasks. Both representation learning and transfer learning phases are 
illustrated in Figure 3 and Figure 4. 
 

 
 
Figure 3. Architecture of the proposed representation learning approach 
 

The convolutional neural network-based feature extractor processes the input of four pairs of Whole 
Slide Images (WSIs). These images are transformed into four distinct feature maps labeled as map-a, map-b, 
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map-c, and map-d. The objective is to maximize the similarity between two feature maps derived from WSIs 
belonging to the same cancer category. Despite potential variations in pixel-level visual patterns, the latent 
features are expected to exhibit similarity, given that they pertain to identical cancer types. To accomplish this, 
I utilize the cosine similarity function to quantify the similarity between each pair of feature maps and calculate 
the corresponding loss value. The step-by-step process is explained in Equations 1-3. 

Equation 1: Cosine similarity function 
 

 
 

In the Equation 1, S(a,b) denotes the similarity index or score of  two feature maps map-a, and map-b. 
The similarity score ranges from 0 to 1. A score of 0 signifies that two feature maps are diametrically opposed, 
whereas a score of 1 indicates that the two feature maps are identical. Three total score values are computed 
from the four feature maps. These scores are fed to the softmax function to generate probabilities, as explained 
in Equation 2. 

Equation 2: Softmax function 
 

 
 

In Equation 2, P(a, b) represents the converted probability of the similarity score S(a, b). Among the 
probabilities derived from all three score values, the probability associated with the score calculated from the 
same category should be maximized. To quantify the disparity between the prediction and ground truth, I 
employ the cross-entropy loss function commonly utilized in various classification tasks. The cross-entropy 
loss function is detailed in Equation 3. 

Equation 3: Cross-entropy loss function 
 

𝐿𝐿 = −𝑙𝑙𝑙𝑙𝑙𝑙𝑒𝑒⬚𝑃𝑃 
 

Here, P denotes the predicted probability, and L denotes the calculated loss value. Throughout the 
training process, the model is optimized to minimize the loss value, thereby refining the parameters of the 
feature extractor to extract more consistent features from inputs of the same category. Following training, the 
pre-trained feature extractor is employed in the downstream task. 
 

 
 
Figure 4. Architecture of the proposed transfer learning approach 
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Figure 4 illustrates the architecture of the proposed transfer learning approach. The pre-trained feature 

extractor receives a single WSI as input and generates a feature map, which is then input into the subsequent 
cancer type classifier. The classifier outputs the predicted cancer type. Instead of training this classification 
network from randomly initialized weights, I employ transfer learning, where the pre-trained feature extractor 
serves as the starting point for training weights. This training approach facilitates faster training and yields more 
accurate results. Additionally, the cross-entropy loss function is applied in training the model during transfer 
learning, with the mathematical equation being identical to Equation 3. The effectiveness of the proposed 
approach will be studied in Chapter 4. 
 

Experimental Results 
 
Dataset and Evaluation Metric 
 
To train and evaluate the performance of the proposed model, I employed three distinct Whole Slide Image 
(WSI) classification datasets, including the Microsatellite Instable (MSI) vs. Microsatellite Stable (MSS) 
dataset from Nicolas (2019), the Metastatic Tissue dataset from Kaggle (2020), and the Breast Cancer dataset 
from Mooney (2017). 

The Metastatic Tissue dataset utilized in this study comprises a total of 327,680 WSIs. The dataset is 
curated from histopathologic scans of lymph node sections. The primary focus of this dataset is the annotation 
of images with binary labels indicating the presence or absence of metastatic tissue. 
 

 
 
Figure 5. Metastatic Tissue dataset (Nicolas 2019) 
 

The Breast Cancer dataset consists of 162 WSIs, each scanned at a magnification of 40x. A total of 
277,524 patches were extracted from these whole mount slides. These patches are categorized into two classes: 
Invasive Ductal Carcinoma (IDC) negative (198,738 patches) and IDC positive (78,786 patches). IDC is the 
most common type of breast cancer, accounting for approximately 70-80% of all breast cancer diagnoses. It 
originates in the milk ducts of the breast but has the potential to invade surrounding tissues in the breast.  
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Figure 6. Breast Cancer dataset (Mooney 2017) 
 

The MSI vs. MSS Classification dataset is sourced from histological images of colorectal cancer and 
gastric cancer patients. The dataset comprises 411,890 unique image patches. Microsatellites, also known as 
short tandem repeats or simple sequence repeats, are repetitive sequences of DNA scattered throughout the 
genome. They consist of short sequences of nucleotides repeated in tandem, and their stability is crucial for 
maintaining genomic integrity. MS) and MSS refer to conditions where there is a deviation from the normal 
stability of these repetitive sequences. 
 

 
 
Figure 7. MSI vs. MSS dataset (Nicolas 2019) 
 

To assess the effectiveness of the proposed method, I quantified its performance using four widely 
employed evaluation metrics: accuracy, recall, precision, and F1-score, as commonly applied in various 
classification tasks (Yacouby et al., 2020). 
 
Evaluation  
 
MSI vs. MSS Dataset 
 
Table 1. Evaluation results on various network architectures (MSI vs. MSS dataset) 
 

 Accuracy Recall Precision F1-Score 
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VGG19 0.8983 (±0.0013) 0.8898 (±0.0011) 0.8659 (±0.0015) 0.8777 (±0.0014) 
MobileNetV2 0.9079 (±0.0007) 0.8924 (±0.0007) 0.8712 (±0.0008) 0.8807 (±0.0013) 

EfficientNet-B7 0.9087 (±0.0010) 0.8953 (±0.0008) 0.8699 (±0.0009) 0.8820 (±0.0011) 
Xception 0.9134 (±0.0012) 0.8993 (±0.0015) 0.8801 (±0.0010) 0.8868 (±0.0012) 

HRNet-w32 0.9200 (±0.0006) 0.9021 (±0.0011) 0.8834 (±0.0015) 0.8890 (±0.0009) 
Resnet-50 0.9212 (±0.0012) 0.9055 (±0.0015) 0.8808 (±0.0016) 0.8935 (±0.0014) 

Densenet-121 0.9208 (±0.0008) 0.9074 (±0.0011) 0.8831 (±0.0012) 0.8952 (±0.0011) 
ResNeXt-101 0.9346 (±0.0005) 0.9203 (±0.0008) 0.8957 (±0.0008) 0.9078 (±0.0010) 

 

 
 
Figure 8. Evaluation results on various network architectures (MSI vs. MSS dataset) 
 
Table 1 and Figure 8 provide a comprehensive summary of the evaluation results obtained across various 
network architectures using the MSI vs. MSS dataset. In the experimentation phase, I trained multiple network 
architectures including VGG19 (Simonyan et al. 2014), MobileNetV2 (Sandler et al. 2018), EfficientNet-B7 
(Tan et al. 2019), Xception (Fran et al. 2017), HRNet-w32 (Wang et al. 2020), Resnet-50 (He et al. 2016), 
Densenet-121 (Huang et al. 2017), and ResNeXt-101 (Xie et al. 2017), leveraging the proposed representation 
learning approach. 

VGG19, MobileNetV2, and EfficientNet-B7 exhibited relatively inaccurate results, possibly due to 
their shallower network depth. In contrast, both HRNet-32 and ResNet-50, equipped with deeper convolutional 
layers, demonstrated significantly improved efficacy. Notably, all evaluation results (accuracy) surpassed the 
89% threshold, marking a remarkable achievement. The effectiveness of the proposed representation learning 
is elaborated in detail in Chapter 4.2.3. 
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Figure 9. Confusion matrix and ROC curve (MSI vs. MSS dataset) 
 

Figure 9 showcases the confusion matrix and the receiver operating characteristic (ROC) curve for the 
methods proposed in the MSI vs. MSS classification dataset. A close look at the diagonal elements of the 
confusion matrix offers compelling evidence of the stability and consistency realized by our proposed approach. 
Furthermore, the ROC curve's pronounced near-rectangular contour in the upper-left quadrant suggests that the 
method has outstanding results. 
 
Metastatic Tissue Dataset 
 
Table 2. Evaluation results on various network architectures (Metastatic Tissue dataset) 
 

 Accuracy Recall Precision F1-Score 
VGG19 0.9359 (±0.0014) 0.9299 (±0.0013) 0.9024 (±0.0015) 0.9153 (±0.0011) 
MobileNetV2 0.9374 (±0.0013) 0.9319 (±0.0011) 0.9009 (±0.0012) 0.9168 (±0.0010) 
EfficientNet-B7 0.9381 (±0.0007) 0.9321 (±0.0009) 0.9022 (±0.0007) 0.9166 (±0.0006) 
Xception 0.9424 (±0.0006) 0.9369 (±0.0008) 0.9060 (±0.0011) 0.9210 (±0.0007) 
HRNet-w32 0.9442 (±0.0006) 0.9385 (±0.0007) 0.9149 (±0.0009) 0.9228 (±0.0011) 
Resnet-50 0.9481 (±0.0012) 0.9424 (±0.0010) 0.9142 (±0.0013) 0.9298 (±0.0010) 
Densenet-121 0.9599 (±0.0011) 0.9512 (±0.0013) 0.9512 (±0.0013) 0.9314 (±0.0011) 
ResNeXt-101 0.9605 (±0.0010) 0.9548 (±0.0009) 0.9243 (±0.0013) 0.9393 (±0.0014) 
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Figure 10. Evaluation results on various network architectures (Metastatic Tissue dataset) 
 

In parallel with the initial experiment, I replicated the study on the Metastatic Tissue dataset to assess 
the applicability of the proposed approach to a distinct dataset. As depicted in Figures 5 and 7, the pixel 
distributions of the two datasets exhibit notable differences. The results, outlined in Table 2 and illustrated in 
Figure 10, reveal that all four evaluation metrics consistently achieve outstanding performance, surpassing the 
90% threshold. This compelling outcome demonstrates that the proposed approach effectively addresses and 
mitigates the dataset bias issue encountered by previous methods, thereby significantly enhancing accuracy. 
 

 
Figure 11. Confusion matrix and ROC curve (Metastatic Tissue dataset) 
 

Figure 11 displays the confusion matrix and the ROC curve for the methods implemented on the 
Metastatic Tissue dataset. Similar to the observations in Figure 9, the results show the stability and consistency 
achieved by the proposed approach. 
 
Ablation Study 
To assess the effectiveness of the proposed approach, an ablation study was conducted. The experiment 
involved comparing the performance of two sets of convolutional neural network architectures. The first group 
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comprises ablation models trained without the proposed approach, relying solely on a supervised manner. The 
second group includes models trained using the proposed approach. 
 
Table 3. Ablation study results (Breast Cancer dataset) 
 

 Accuracy 
(ablation model) 

Accuracy 
(proposed method) 

VGG19 0.7802 (±0.0008) 0.8068 (±0.0011) 
MobileNetV2 0.7834 (±0.0009) 0.8087 (±0.0014) 

EfficientNet-B7 0.7895 (±0.0014) 0.8157 (±0.0013) 
Xception 0.8267 (±0.0011) 0.8524 (±0.0011) 

HRNet-w32 0.8480 (±0.0009) 0.8787 (±0.0012) 
Resnet-50 0.8528 (±0.0013) 0.8842 (±0.0008) 

Densenet-121 0.8810 (±0.0010) 0.9148 (±0.0011) 
ResNeXt-101 0.8872 (±0.0007) 0.9224 (±0.0013) 

 
Table 4. Ablation study results (Metastatic Tissue dataset) 
 

 Accuracy 
(ablation model) 

Accuracy 
(proposed method) 

VGG19 0.9118 (±0.0011) 0.9359 (±0.0014) 
MobileNetV2 0.9151 (±0.0014) 0.9374 (±0.0013) 

EfficientNet-B7 0.9146 (±0.0009) 0.9381 (±0.0007) 
Xception 0.9129 (±0.0012) 0.9424 (±0.0006) 

HRNet-w32 0.9174 (±0.0008) 0.9442 (±0.0006) 
Resnet-50 0.9129 (±0.0013) 0.9481 (±0.0012) 

Densenet-121 0.9253 (±0.0016) 0.9599 (±0.0011) 
ResNeXt-101 0.9287 (±0.0007) 0.9605 (±0.0010) 

 
Table 3 provides a summary of the evaluation results for the Breast Cancer dataset, while Table 4 

presents the results for the Metastatic Tissue dataset. Remarkably, the evaluation results of the proposed method 
consistently outperform the ablation model across all convolutional neural network architectures by a 
significant margin. This outcome demonstrates that the proposed approach effectively addresses the dataset bias 
issue inherent in supervised training methods. The superiority of these results can be attributed to the proposed 
contrastive learning-based representation learning which aims to train the model to extract latent patterns of 
cancer cells. 
 

Conclusion 
 
This research has aimed to revolutionize the landscape of pathology image analysis, specifically targeting 
Whole Slide Images (WSIs), by introducing a novel contrastive learning-based multi-task system. The 
experimental results demonstrated the efficacy of the proposed approach in enhancing the accuracy and 
reliability of whole slide image classification. The proposed system, leveraging contrastive learning techniques, 
has consistently outperformed existing state-of-the-art machine learning models, as demonstrated in the 
evaluation on both Breast Cancer and Metastatic Tissue datasets. Notably, the proposed system exhibited 
stability and consistency across diverse datasets, addressing the bias issues encountered by previous methods 
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and achieving remarkable performance metrics above 90%. This research contributes to the field in several key 
ways. First, it addresses the time-consuming and labor-intensive nature of traditional pathology processes by 
automating whole slide image classification. Second, it tackles the bias problem inherent in machine learning 
models which ensures their adaptability to real-world scenarios. Third, the proposed system provides a robust 
and consistent approach to pathology image analysis. 
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