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ABSTRACT 
 
Attention-Deficit/Hyperactivity Disorder (ADHD) is a complex neurodevelopmental condition characterized 
by persistent challenges in attention, hyperactivity, and impulsivity, significantly impacting daily functioning 
and developmental trajectories. The traditional ADHD diagnostic process typically involves comprehensive 
assessments conducted by healthcare professionals, such as psychologists, psychiatrists, or pediatricians. These 
assessments rely heavily on subjective observations and reports from various sources. However, this approach 
is time-consuming, labor-intensive, and often requires multiple appointments which makes it a resource-inten-
sive process. To address this issue, I propose an unsupervised learning-based gaze estimation system for the 
screening of ADHD. The proposed system takes eye images as input and generates gaze vectors which indicate 
the individual's current focal point. By aggregating these gaze vectors over a specific time series, the system 
can identify abnormalities in the gaze patterns which facilitate the early screening of ADHD. Comprehensive 
experiments have shown the superiority of the proposed system over previous methods. The experimental re-
sults also confirm the feasibility of utilizing the proposed method as a biometric for screening ADHD.  
 

Introduction 
 
The conventional diagnostic process for ADHD relies on comprehensive assessments conducted by healthcare 
professionals, involving subjective observations and reports from multiple sources, such as individuals, parents, 
and teachers. This traditional approach, while valuable, is fraught with challenges, including its time-consuming 
and resource-intensive nature, often necessitating multiple appointments. The current diagnostic paradigm 
poses limitations in terms of efficiency, accessibility, and objectivity. The reliance on subjective assessments 
may introduce biases and hinder timely intervention. Recognizing these challenges, there is a pressing need for 
innovative methodologies that can augment or even revolutionize the ADHD diagnostic process. 

This research addresses the shortcomings of traditional ADHD diagnosis by proposing a groundbreak-
ing solution – an unsupervised learning-based gaze estimation system for ADHD screening. The core premise 
of this system involves the analysis of eye images to generate gaze vectors, providing insights into an individ-
ual's focal points. Through the aggregation of these gaze vectors over specific time series, the system discerns 
abnormalities in gaze patterns, offering a novel and objective approach to the early screening of ADHD. 

The primary objective of this research is to advance the field of ADHD diagnostics by introducing and 
evaluating the proposed gaze estimation system. This system, built on unsupervised learning-based gaze esti-
mation, aims to not only streamline the diagnostic process but also contribute to the early identification of 
ADHD traits. 

The structure of this research paper is as follows: Chapter 2 provides background knowledge to en-
hance the understanding of the proposed method. In Chapter 3, every detail of the proposed method is explained, 
encompassing its architectural overview and machine learning training procedures. Chapter 4 investigates a 
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comprehensive analysis of experimental results which aim to examine the effectiveness of the proposed method. 
Finally, Chapter 5 summarizes the key findings and contributions of this research. 
 
 
 
 

Related Work 
 
Gaze Estimation 
 
Gaze Estimation is a modern eye-tracking mechanism utilizing various machine learning methods. In simple 
terms, this technology allows machines to recognize the direction one is looking at by training the algorithm 
with certain training samples. As an input mechanism, the algorithm intakes a photo of an eye or a photo en-
compassing a part of an eye. As its output, it deduces the exact direction of the eye using metrics, yaw and 
pitch. To elaborate, yaw and pitch respectively are labels that measure the rotation of an object. Yaw measures 
the vertical angle and pitch measures the horizontal angle of two designated points. In the context of this gaze 
estimation and its application, yaw and pitch is measured to see how the gaze of a person or eye direction 
changes over a duration of time.  
 

 
 
Figure 1. Illustration of yaw, pitch, and roll 
 

 
 
Figure 2. Example of gaze estimation technique (driver monitoring system) (Kasahara et al. 2022) 
 

One of the domains where gaze estimation has found widespread application is in enhancing human-
computer interaction. By tracking users' eye movements, systems can intuitively respond to their gaze, enabling 
hands-free control, cursor navigation, and interactive experiences.  
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This has implications for virtual reality, gaming, and assistive technologies, making interfaces more 
natural and accessible. In the automotive industry, gaze estimation contributes to enhancing driver safety (Kar 
et al. 2017). By monitoring drivers' gaze patterns, systems can detect signs of drowsiness or distraction, issuing 
warnings or interventions when necessary (Shah et al. 2022). This technology is necessary in the development 
of advanced driver assistance systems and the progression toward autonomous vehicles. Another application is 
pilot training simulations (Babu et al. 2019). In terms of training pilots, this technology helps the pilots and 
pilot instructor to know the objective cognitive ability of a pilot in real-time. Gaze estimation increases training 
efficiency and training benefit for military aviation fields.  

In healthcare, gaze estimation has promising applications, including neurological disorder diagnostics. 
Gaze-based diagnostics offer a non-invasive and objective method for early detection and monitoring of various 
health-related issues. In this research, I utilize gaze estimation as a biometric system to screen ADHD. The 
detailed explanation will be provided in Chapter 3. 
 
Regression in Machine Learning  
 
Machine learning encompasses a diverse set of techniques that enable computers to learn patterns from data 
and make predictions or decisions. This chapter provides an in-depth exploration of regression, its principles, 
algorithms, and applications. Regression is a supervised learning technique that focuses on predicting a contin-
uous outcome variable based on one or more predictor variables. In simpler terms, it models the relationship 
between input features and a numeric target variable. Unlike classification, where the goal is to predict a cate-
gorical label, regression aims to estimate a quantity.  
 

 
 
Figure 3. Regression example (fitting polynomial function to data points) 
 

Gaze estimation system can be considered as a regression problem, given that its output, the gaze 
vector, comprises two continuous values: yaw and pitch (Park et al. 2019). The training of the gaze estimation 
model involves utilizing loss functions commonly employed in general regression problems, such as mean 
squared error or mean absolute error. In the proposed approach, I introduce unsupervised learning for gaze 
estimation to improve the accuracy of the system.  
 
ADHD and Eye Movements 
 
The correlation between ADHD and eye movement has been a subject of research interest aiming to understand 
the potential relationship between neurodevelopmental disorders and oculomotor behavior. Various studies 
have investigated how individuals with ADHD may exhibit distinct patterns of eye movement compared to 
those without the disorder.  
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Research explains that individuals with ADHD may display differences in saccadic eye movements 
(Goto et al. 2010). Saccades are rapid, voluntary eye movements that redirect the gaze from one point to another. 
Some studies propose that individuals with ADHD might exhibit increased variability in the amplitude and 
velocity of saccadic movements, potentially reflecting underlying cognitive and attentional processes (Levan-
tini et al. 2020). Smooth pursuit eye movements, which involve tracking a moving object smoothly with the 
eyes, have also been examined in relation to ADHD (Ross et al. 2000). It is hypothesized that individuals with 
ADHD may experience difficulties in maintaining smooth pursuit, possibly due to challenges in sustaining 
attention on a moving target. 
 

 
 
Figure 4. Eye movement for a single image for a five seconds lapse of time. (Galgani et al. 2009) (left) a control 
subject; (right) a subject diagnosed with ADHD  
 

Motivated by these insights, this research introduces an ADHD screening system that leverages gaze 
estimation to automatically assess individuals' eye movements by predicting yaw and pitch vectors. Addition-
ally, an unsupervised learning approach is incorporated to augment the system's accuracy. Chapter 3 will ex-
plain the details of the proposed system including a comprehensive overview, the system architecture and the 
choice of loss function employed in training the machine learning model. 
 

Proposed Method 
 
The proposed gaze estimation-based ADHD screening system consists of two integral modules: the gaze esti-
mation module and the ADHD screening module. In the gaze estimation module, an eye image is inputted to  
generate a gaze vector comprising yaw and pitch values. To enhance the precision of gaze estimation, I intro-
duce a novel unsupervised representation learning method which is explained in detail in Chapter 3.1. The 
ADHD screening module leverages these gaze vectors to identify anomaly patterns in individuals' eye move-
ments. This process involves predefined post-processing steps, outlined in Chapter 3.2. The flowchart of the 
proposed system is illustrated in Figure 5. 
 

 
 
Figure 5. Flowchart of the proposed system 
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Gaze Estimation  
 
The goal of gaze estimation is to predict the gaze vector which is composed of yaw and pitch values. This 
system takes eye images as input which include various features such as skin color, brightness, eye shape, and 
gaze-related features. Notably, among these features, only gaze-related features significantly impact the perfor-
mance of gaze estimation (Park et al. 2019). It is evident that appearance features like brightness, skin color, or 
eye shape do not contribute to the efficacy of gaze estimation. Therefore, achieving heightened accuracy in 
gaze estimation necessitates the disentanglement of gaze-related features from the entangled set of features. 

To address this, I propose a novel unsupervised gaze representation learning method that involves 
applying a rotation matrix to the feature space. This approach aims to enhance the discernment of gaze-related 
features, thus contributing to the overall accuracy of gaze estimation. 
 
Unsupervised Gaze Representation Learning 
 

 
 
Figure 6. Architecture of the proposed unsupervised gaze representation learning approach (encoder) 
 
The objective of gaze representation learning is to consistently extract and disentangle gaze-related features 
that significantly impact the enhancement of gaze estimation. To achieve this, I leverage a convolutional neural 
network-based autoencoder architecture, commonly employed in representation learning. The autoencoder 
comprises an encoder and a decoder. The encoder processes four pairs of eye images, captured from the same 
individual but directed towards different gaze points (e.g., IA,L and IA,R for the left and right eye images looking 
at gaze direction A, and IB,L and IB,R for gaze direction B).  

These eye images are inputted to the encoder to generate four feature maps as illustrated in Figure 6. 
Each eye image is transformed into a feature map, denoted as z, comprising two elements: appearance feature 
zappr and gaze feature zgaze. As zA,L and zB,L are extracted from the same left eye, they share identical appearance 
features. Similarly, zA,R and zB,R, being derived from the right eye, should exhibit the same appearance features. 
Additionally, zA,L and zA,R possess matching gaze features, while zB,L and zB,R share equivalent gaze features. The 
proposed gaze representation learning capitalizes on this inherent consistency by employing a gaze rotation 
matrix. Each eye image is associated with a ground truth gaze vector, enabling the straightforward derivation 
of the rotation matrix H between these two gaze vectors, as outlined in Equation 1 (Cuemath 2021). 

Equation 1: Calculation of rotation matrix H 
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Here, 𝐻𝐻(𝛼𝛼,𝛽𝛽) represents the rotation matrix that transforms vector A into vector B and 𝛼𝛼 and 𝛽𝛽 denote 
the yaw and pitch angle difference of the gaze vector A and B, respectively. 
 

 
 
Figure 7. Architecture of the proposed unsupervised gaze representation learning approach (decoder) 
 

The rotation matrix 𝐻𝐻(𝛼𝛼,𝛽𝛽) is applied in feature space as explained in Equation 2. 
Equation 2: Applying rotation matrix in feature space 

 
𝑧𝑧𝑖𝑖,𝑗𝑗
𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔−𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 = 𝐻𝐻(𝛼𝛼,𝛽𝛽) 𝑧𝑧𝑖𝑖,𝑗𝑗

𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 
 
 Where, 𝑧𝑧𝑖𝑖,𝑗𝑗

𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔−𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 denotes the rotated gaze-related feature map for i∈{A, B}, and j∈{L, R}. The 
computed rotation matrices are applied to all four pairs of feature maps, as illustrated in Figure 7. In the decod-
ing process, these feature space-wise rotated feature maps are utilized to reconstruct the rotated eye images. For 
instance, when the decoder receives 𝑧𝑧𝐴𝐴,𝐿𝐿

𝑅𝑅  as input, it reconstructs IB,L instead of IA,L, given that the gaze-related 
feature is rotated. The fundamental assumption guiding this approach is that the appearance feature remains 
consistent; however, due to the rotation of the gaze-related feature in feature space, the decoder reconstructs 
the rotated eye image. To quantify the discrepancy between the generated image and its ground truth, the re-
construction error is measured using the loss function shown in Equation 3. 

Equation 3: Reconstruction loss function  
 

 
 

Within Equation 3, 𝐼𝐼𝑖𝑖,𝑗𝑗′ (𝑥𝑥, 𝑦𝑦) denotes the pixel intensity at the specified x and y coordinates of the 
reconstructed eye image, while 𝐼𝐼𝑖𝑖,𝑗𝑗(𝑥𝑥, 𝑦𝑦) corresponds to the pixel intensity at the same coordinates in the ground 
truth image. Throughout the training phase, the encoder learns to disentangle the gaze-related feature from the 
appearance feature. The resulting trained encoder exhibits a generalization ability which enhances the accuracy 
of gaze estimation in subsequent transfer learning. The efficacy of the proposed approach will be thoroughly 
examined in Chapter 4. 
 
Gaze Estimation 
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Figure 8. Architecture of the gaze estimation network 
 
Following representation learning, the pre-trained encoder functions as the initial point for fine-tuning the gaze 
estimation network. The input eye image is fed into the encoder to produce feature maps. From these maps, 
only the gaze feature map is extracted and inputted into the gaze vector estimation network which predicts gaze 
vector (yaw and pitch). By adopting this transfer learning strategy, rather than training the network from scratch, 
the model ensures faster training and achieves accurate results. This contributes to the proposed gaze represen-
tation learning. The effectiveness of this approach is investigated in Chapter 4. 

For the network architecture, I designed a two-layered neural network for the gaze vector estimation 
network. The training process employs the mean squared error function which is commonly utilized in regres-
sion problems, as shown in Equation 4. 

Equation 4: Mean squared error function 
 

 
 

In Equation 4, N denotes the total number of samples while 𝑦𝑦𝑦𝑦𝑦𝑦� and 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝ℎ�  are predicted yaw and 
pitch of the gaze vector, respectively.  
 
ADHD Screening 
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Figure 9. ADHD screening system demonstration. (Left: Gaze vector trajectories of a normal individual; Right: 
Gaze vector trajectories of an individual with ADHD) 
 
In this chapter, I present the prototype of the ADHD screening system proposed in this research paper. Figure 
9 provides a visual representation of the ADHD screening system in action, depicting scenarios for both normal 
individuals and those with ADHD. Over a specific time period, the system performs gaze estimation, collecting 
projected gaze vectors on the screen to indicate the individuals' focal points at different moments. Subsequently, 
the system plots the trajectories formed by these gaze vectors, offering valuable insights for screening purposes 
to determine the presence of ADHD. Notably, this system is adaptable to any laptop environment equipped with 
a webcam. 

These trajectories can be readily utilized for training a machine learning-based anomaly detection net-
work, representing a key aspect of my future research plans. I expect that this novel approach could significantly 
enhance the efficiency of early ADHD screening for young students, particularly due to its superior accessibility 
compared to traditional screening methods for ADHD. 
 

Experimental Results 
 
Dataset  
 
In this chapter, I present an in-depth explanation of the dataset employed in this research study. GazeCapture 
is a publicly available and open-source dataset specifically curated for training gaze estimation models.  
 

 
 
Figure 10. GazeCapture Dataset (Krafka et al. 2016) 
 

GazeCapture contains a diverse and extensive collection of face images sourced from 1,474 individu-
als. The dataset is crafted to encompass a wide array of facial expressions, head poses, and environmental 
conditions. The dataset comprises a total of 2,445,504 discrete images. For every image in the dataset, the 
ground truth gaze vector, represented by the angles (yaw, pitch), is annotated. For the experiments, the dataset 
is segmented into two subsets: an 80% portion designated as the training set and the remaining 20% allocated 
as the testing set. 
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Evaluation Metrics 
 
To measure the accuracy of the proposed model, I utilize angular error as an evaluation metric. Angular error 
is measuring the margin of error of two sets of vectors; in this experiment, it is used to compare the vector 
proposed by the gaze estimation algorithm and the actual direction of the eye. The formula for angular error is 
illustrated in equation 5.  

Equation 5: Angular Error  
 

 
 

Where, A and B denote the predicted gaze vector and its ground truth, respectively. In the numerator, 
the dot product of each vector is denoted.  In the denominator, the norm of each vector is multiplied together. 
After a value comes out from this process, this number is inputted to the inverse cosine function. As a result, 
the equation gives the angle error between the predicted gaze vector and its ground truth.  

In the best case scenario when there is no angular error, the equation gives 1 as the value before being 
processed by the inverse cosine function. In the worst case scenario, this number is -1. As the angular error 
function is a cosine similarity function, the best and worst case scenarios are described as the two furthest points 
in the cosine graph.  
 
Experimental Protocol  
 
To compare the performance of the proposed method to the state-of-the-art gaze estimation methods, I con-
ducted two types of experiments. Firstly, the performance of the proposed method was compared with previous 
state-of-the-art methods within the Gazecapture dataset, referred to as within-dataset evaluation. This evalua-
tion aimed to assess how well the trained approach performs on the specific dataset. 

The second type of experiment involved cross-dataset evaluation. In this case, the models were initially 
trained using the Gazecapture dataset, and then the trained model was tested using a different dataset from a 
distinct domain. This step was taken to gauge the generalization capabilities of the proposed approach in en-
hancing gaze estimation performance across diverse datasets. 
 
Evaluation 
 
Within Dataset 
 
Table 1. Evaluation comparison on GazeCapture dataset 
 

Method Angular Error 
FAZE 

(Park et al. 2019) 
13.7 

U-LinFT 10.6 

Volume 13 Issue 2 (2024) 

ISSN: 2167-1907 www.JSR.org/hs 9



(Yu et al. 2020) 
CrossEncoder 

(Sun et al. 2021) 
8.9 

MultiGaze 
(Gideon et al. 2022) 

8.0 

Proposed Method 6.7 
 

 
 
Figure 11. Evaluation comparison on GazeCapture dataset 
 
Table 1 and Figure 11 summarize the performance comparison on the GazeCapture dataset with previous state-
of-the-art gaze estimation methods. The selected comparison methods include FAZE (Park et al., 2019), U-
LinFT (Yu et al., 2020), CrossEncoder (Sun et al., 2021), and MultiGaze (Gideon et al., 2022), all of which 
demonstrate comparable gaze estimation performance. Notably, the proposed method surpasses the perfor-
mance of all comparison methods. This superiority is attributed to the proposed application of the rotation 
matrix in the feature space approach which enhance the model's ability to extract more robust gaze-related 
features. The generalization ability of this approach will be further explored in the following Chapter 4.4.2. 
 
Cross Dataset 
 
Table 2. Evaluation comparison on cross dataset (angular error) 
 

Method Evaluation Dataset 
ETH-XGAZE EYEDIAP 

FAZE 
(Park et al. 2019) 

25.6 24.7 

U-LinFT 
(Yu et al. 2020) 

22.8 19.6 

CrossEncoder 
(Sun et al. 2021) 

19.4 17.4 

MultiGaze 
(Gideon et al. 2022) 

16.9 16.2 

Proposed Method 11.2 9.7 
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Figure 12. Evaluation comparison on cross dataset 
 
To assess the generalization ability of the proposed method, I conducted cross-dataset evaluations. The models 
trained using the GazeCapture dataset are tested on different datasets, namely EYEDIAP (Mora et al., 2014) 
and ETH-XGAZE (Zhang et al., 2020), each characterized by slightly different domain features. Angular error 
measurements were employed for performance evaluation, and the results are presented in Table 2 and Figure 
12. 

The cross-dataset evaluation reveals notable disparities among the models. FAZE and U-LinFT exhibit 
subpar results which indicate limited generalizability. In contrast, CrossEncoder and MultiGaze, leveraging 
representation learning, demonstrate improved performance. Notably, the proposed method outperforms all 
previous approaches by a significant margin. This outcome clearly proves the effectiveness of the proposed 
approach wherein the application of the rotation matrix in the feature space. This approach contributes to in-
creased accuracy and enhances the trained model's generalizability. 
 

Conclusion 
 
In this research, I proposed an unsupervised learning-based gaze estimation system for the screening of ADHD. 
The main objective was to introduce an innovative gaze estimation system utilizing unsupervised learning, with 
a distinct emphasis on addressing the challenges associated with the traditional diagnostic process for ADHD. 
Through a series of comprehensive experiments, I demonstrated the efficacy of the proposed gaze estimation 
system. The system not only outperformed previous methods, as evidenced by within-dataset evaluations on 
Gazecapture, but also proved its robust generalization capabilities in cross-dataset evaluations. By capitalizing 
on gaze abnormalities as potential biomarkers for ADHD, the proposed system presents an efficient and objec-
tive screening tool. The reliance on eye images for screening introduces a non-invasive and accessible dimen-
sion to the diagnostic process, potentially revolutionizing the way ADHD is identified and addressed.  

In conclusion, this research contributes to the growing body of work aimed at leveraging advanced 
technologies for the betterment of healthcare diagnostics. The proposed gaze estimation system not only show-
cases technical advancements but also holds the potential to make a tangible impact on the early detection and 
intervention of ADHD. While the proposed method marks a significant step forward, there are avenues for 
future exploration. Further refinements in the gaze estimation model, expanded datasets encompassing diverse 
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demographic groups, and continued validation through clinical studies can enhance the system's reliability and 
applicability in real-world scenarios. Additionally, future steps involve utilizing clinical data on the eye move-
ment of individuals with ADHD to evaluate the functionality of the prototype in real-world context.  
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